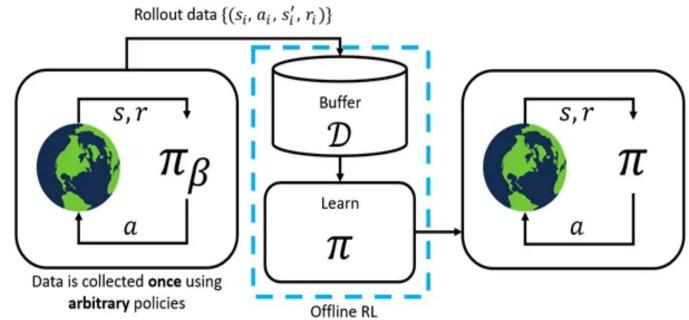
Free from Bellman Completeness: Trajectory Stitching via Model-based Return-conditioned Supervised Learning

Zhaoyi Zhou¹, Chuning Zhu², Runlong Zhou², Qiwen Cui², Abhishek Gupta², Simon Shaolei Du²

¹Tsinghua University, ²University of Washington

Offline Reinforcement Learning

- Dataset collected by sub-optimal behavior policy
- No interactions with environment during policy training
- Goal: Learn a (near-)optimal policy



(Figure from https://towardsdatascience.com/the-power-of-offline-reinforcement-learning-5e3d3942421c)

Dynamic Programming (DP)

Bellman operation

$$\widehat{Q}_h \leftarrow \mathcal{B}\widehat{Q}_{h+1} = \{r(s,a) + \mathbb{E}_{s' \sim \mathcal{T}(\cdot|s,a)} \sup_{a'} \widehat{Q}_{h+1}(s',a')\}_{(s,a) \in \mathcal{S} \times \mathcal{A}}.$$

- Pro: Enable trajectory stitching
- Con: Could diverge in practice, due to Bellman completeness

Definition 2.2 (Bellman complete). A function approximation class \mathcal{F} is Bellman complete under Bellman operator \mathcal{B} if $\max_{Q \in \mathcal{F}} \min_{Q' \in \mathcal{F}} \|Q' - \mathcal{B}Q\| = 0$.

Question

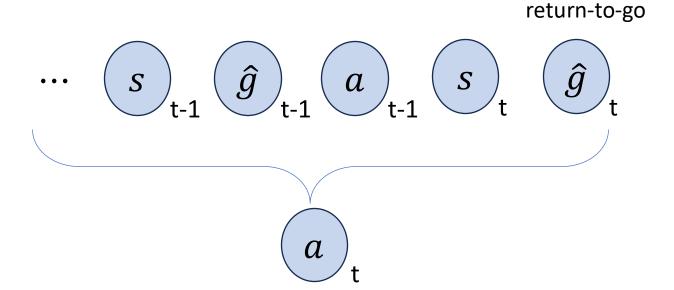
Can we design offline reinforcement learning algorithms that:

- 1) avoid Bellman completeness (Pro of RCSL);
- 2) do trajectory stitching (Pro of DP)?

RCSL (Training)

Return-conditioned supervised learning (RCSL)

Learn a return-conditioned policy



RCSL (Evaluation)

Algorithm 1 Return-conditioned evaluation process

- 1: **Input:** Return-conditioned policy $\pi: \mathcal{S} \times \mathbb{R} \to \Delta(\mathcal{A})$, desired RTG \tilde{g}_1 .
- 2: Observe s_1 .
- 3: **for** $h = 1, 2, \dots, H$ **do**
- 4: Sample action $a_h \sim \pi(\cdot|s_h, \tilde{g}_h)$.
- 5: Observe reward r_h and next state s_{h+1} .
- 6: Update RTG $\tilde{g}_{h+1} = \tilde{g}_h r_h$.
- 7: **Return:** Actual RTG $g = \sum_{h=1}^{H} r_h$.

Contributions

• We theoretically show how RCSL can outperform DP in deterministic environments.

 We theoretically show the shortcomings of RCSL when the off-policy dataset does not cover optimal trajectories.

 We propose MBRCSL, a novel framework that achieves trajectory stitching without suffering from the challenge of Bellman completeness.

Strength of RCSL: Setup

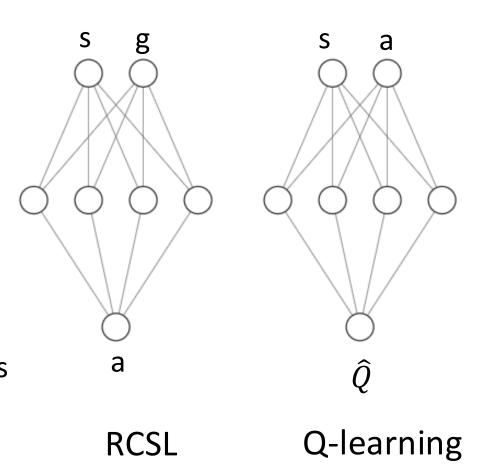
Compare RCSL with Q-learning

Similar network architecture: MLP

Analyze hidden neurons needed

RCSL: represent optimal policy

Q-learning: satisfy Bellman completeness



Strength of RCSL: Result

Thm: There exists a series of MDPs (state space $|S| \to \infty$), and associated datasets such that:

- 1) RCSL represents optimal policy with O(1) hidden neurons
- 2) Q-learning cannot satisfy Bellman completeness with $O(|\mathcal{S}|)$ hidden neurons.

RCSL scales with state space; Q-learning does not!

Strength of RCSL: Proof Idea

• Q: What happens when Bellman completeness is satisfied?

A: The reward function must be representable!

• $\mathcal{B}Q(s,a) = r(s,a)$ if $Q \equiv 0$.

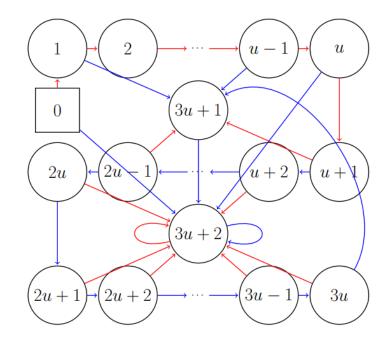
Let it be 0 function!

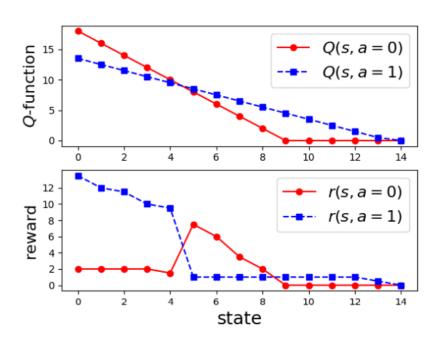
$$\widehat{Q}_h \leftarrow \mathcal{B}\widehat{Q}_{h+1} = \{r(s,a) + \mathbb{E}_{s' \sim \mathcal{T}(\cdot|s,a)} \sup_{a'} \widehat{Q}_{h+1}(s',a')\}_{(s,a) \in \mathcal{S} \times \mathcal{A}}.$$

Strength of RCSL: Proof Idea

Construct a class of MDPs ("LinearQ"):

- Optimal Q-function representable with constant hidden neurons
- Reward function must use $O(|\mathcal{S}|)$ hidden neurons to represent



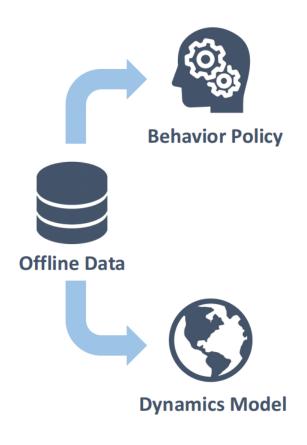


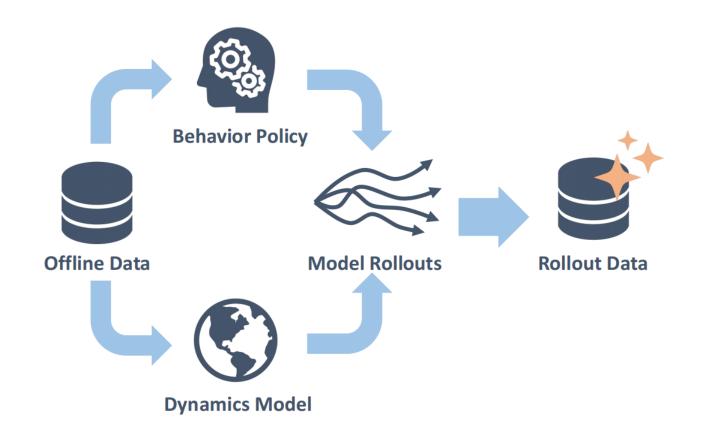
Weakness of RCSL

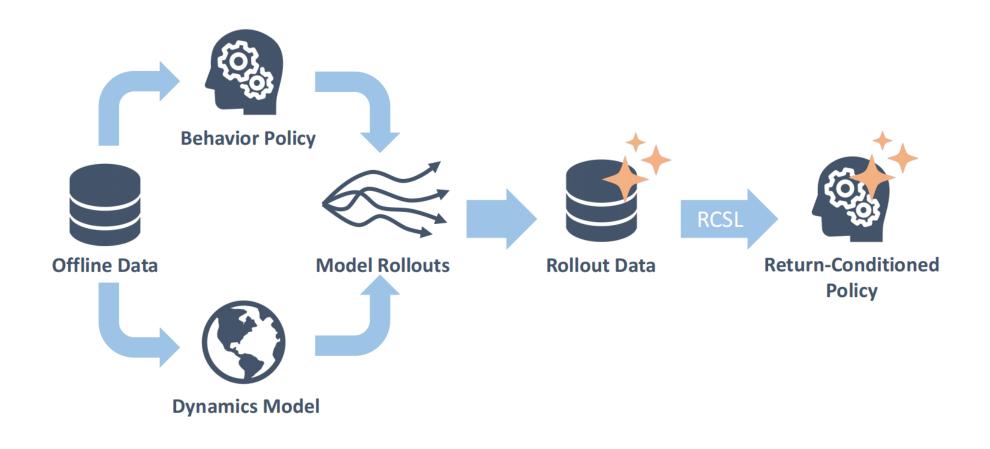
- No Trajectory Stitching
- For either special case of RCSL:
 - Markovian RCSL
 - Decision transformer with any context length
- Even with deterministic transition & uniform coverage of dataset.

Can we design off-policy reinforcement learning algorithms that are:

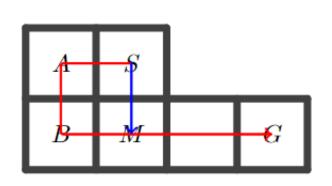
- 1) Free from Bellman completeness
- 2) Retaining trajectory stitching ability of DP-based methods?

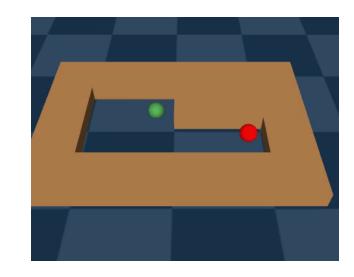






Experiments: Point Maze



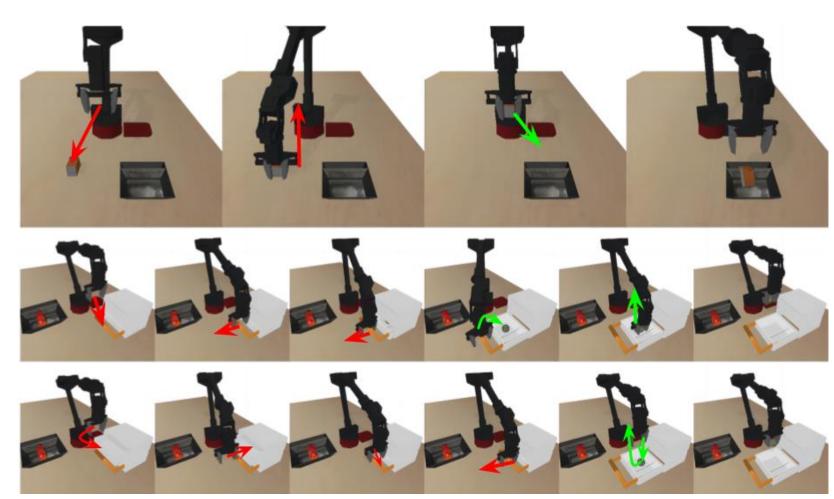


Dataset	MBRCSL (ours)	COMBO	MOPO	CQL	DT	%BC
Pointmaze	91.5±7.1	56.6±50.1	77.9±41.9	34.8 ± 24.9	57.2±4.1	54.0±9.2

Experiments: Simulated Robotics

Pick Place

Blocked Drawer



Experiments: Simulated Robotics

Task	MBRCSL (ours)	CQL	COMBO	DT	BC	MBCQL
PickPlace	0.40±0.16	0.22 ± 0.35	0±0	0±0	0.07 ± 0.03	0.08 ± 0.05
ClosedDrawer	$0.51 {\pm} 0.12$	0.11 ± 0.08	0 ± 0	0 ± 0	0.38 ± 0.02	0±0
BlockedDrawer	0.68±0.09	0.34 ± 0.23	0 ± 0	0±0	0.61 ± 0.02	0±0

Takeaways

 RCSL outperforms DP-based off-policy algorithms given expert dataset, due to freedom from Bellman-completeness

RCSL cannot do trajectory stitching as DP-based methods can

 MBRCSL retains trajectory stitching of DP-based methods, while avoiding Bellman-completeness.