Quadratic Convergence of Online Direct Preference Optimization

Runlong Zhou

Oct 15 2024

WAIL-POD Presentation

Acknowledgement

This is a joint work with

Ruizhe Shi and Simon Du

Language Generation

- Prompt (State): user queries
- Response (Action): language model generation result

Give me a very short introduction of reinforcement learning from human feedback.

Reinforcement Learning from Human Feedback (RLHF) is a technique where Al agents learn by receiving guidance from human preferences or evaluations. Instead of relying solely on predefined rewards, the agent improves its behavior based on feedback from humans, helping it align more closely with desired outcomes, particularly in complex or subjective tasks.

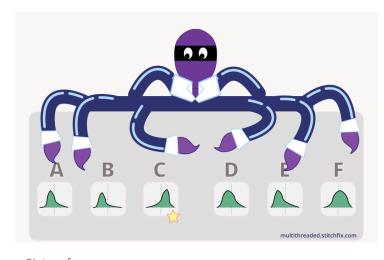
Bandits

Multi-armed bandits (MABs)

- Arm space ${\mathcal Y}$
- **Reward** function $r(y) \in [0,1]$

Contextual bandits (CBs)

- Context (Prompt) space ${\mathcal X}$
- Arm (Response) space \mathcal{Y}
- Reward function $r(x, y) \in [0,1]$



Picture from https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

Results in this work can be easily adapted to CBs, so we focus on MABs only

Policy

• A **tabular softmax** policy π_{θ} for MABs satisfies

$$\pi_{\theta}(y) = \frac{e^{\theta y}}{\sum_{y'} e^{\theta y'}}$$

Reward-based v.s. Preference-based RL

=MABs in this work

Reward-based RL

After choosing an arm y, observe a sample $r \sim R(y)$ with mean r(y)

Preference-based RL

- A preference model $p^*(y_1 > y_2)$ indicating the probability that y_1 is preferred over y_2
- After choosing a pair of arms (y_1, y_2) , observe a sample $p \sim \text{Bernoulli}(p^*(y_1 > y_2))$

Bradley-Terry (BT) Model

Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

BT preference model

$$p^*(y_1 > y_2) = \sigma(r(y_1) - r(y_2)) = \frac{e^{r(y_1)}}{e^{r(y_1)} + e^{r(y_2)}}$$

RL from Human Feedback (RLHF)

- Human preference dataset $\mathcal{D} = \left\{ \left(y_w^{(i)}, y_l^{(i)} \right) \right\}_{i=1}^N$
 - In the ith sample, $y_w^{(i)}$ is preferred over $y_l^{(i)}$
- Step 1: Learn reward function by minimizing negative log-likelihood

$$\mathcal{L}_r(\phi) = -\frac{1}{N} \sum_{i=1}^{N} \log \sigma \left(r_{\phi} \left(y_w^{(i)} \right) - r_{\phi} \left(y_l^{(i)} \right) \right)$$

RL from Human Feedback (RLHF)

 Step 2: Learn policy by maximizing regularized value using proximal policy optimization (PPO)

$$\theta_{\phi}^{\star} = \underset{\theta}{\operatorname{argmax}} \mathbb{E}_{y \sim \pi_{\theta}}[r_{\phi}(y)] - \beta \operatorname{KL}(\pi_{\theta} || \pi_{\operatorname{ref}})$$

University of Washington _____

Direct Preference Optimization (DPO)

• Under tabular softmax parametrization

$$\pi_{\phi}^{\star} = \underset{\pi}{\operatorname{argmax}} \mathbb{E}_{y \sim \pi}[r_{\phi}(y)] - \beta KL(\pi || \pi_{ref})$$

is equivalent to

$$\pi_{\phi}^{\star}(y) = \frac{1}{Z_{\phi}} \pi_{\text{ref}}(y) e^{r_{\phi}(y)/\beta}$$

where Z is the normalizing factor

Direct Preference Optimization (DPO)

• For any y,

$$r_{\phi}(y) = \beta \left(\log Z_{\phi} + \log \frac{\pi_{\phi}^{\star}(y)}{\pi_{\text{ref}}(y)} \right)$$

• Plug into reward loss and Z_{ϕ} cancels out!

$$\mathcal{L}_{\pi}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log \sigma \left(\beta \log \frac{\pi_{\theta} \left(y_{w}^{(i)} \right)}{\pi_{\text{ref}} \left(y_{w}^{(i)} \right)} - \log \frac{\pi_{\theta} \left(y_{l}^{(i)} \right)}{\pi_{\text{ref}} \left(y_{l}^{(i)} \right)} \right)$$

Ideal Case: Exact DPO

- Suppose we have two sampling policies π^{s1} for y_1 and π^{s2} for y_2
- Define sampling probability

$$\pi^{\mathsf{s}}(y,y') := \mathsf{sg}\left(\pi^{\mathsf{s}1}(y)\pi^{\mathsf{s}2}(y') + \pi^{\mathsf{s}1}(y')\pi^{\mathsf{s}2}(y)\right)$$

Exact DPO loss function

$$\mathcal{L}_{\mathrm{DPO}}(\theta) := -\sum_{y,y' \in \mathcal{Y}} \pi^{\mathsf{s}}(y,y') p^{\star}(y > y') \log \sigma \left(\beta \log \frac{\pi_{\theta}(y) \pi_{\mathsf{ref}}(y')}{\pi_{\mathsf{ref}}(y) \pi_{\theta}(y')} \right)$$

Policy update

$$\theta^{(t+1)} = \theta^{(t)} - \eta \alpha(\pi^{s1}, \pi^{s2}) \nabla_{\theta} \mathcal{L}_{\text{DPO}}(\theta^{(t)})$$

Sampling coefficient determined by samplers

Ideal Case: Exact DPO

Mixture of samplers

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} \left(\alpha_1 \mathcal{L}_1(\theta^{(t)}) + \alpha_2 \mathcal{L}_2(\theta^{(t)}) \right)$$

Central to our design

Practical Case: Empirical DPO

No access to exact gradients

$$\theta^{(t+1)} = \theta^{(t)} - \eta G^{(t)}$$

where $G_y^{(t)}$ is a random variable that

$$\frac{1}{\beta A} \left(G_y^{(t)} - \alpha(\pi^{s1}, \pi^{s2}) \nabla_{\theta_y} \mathcal{L}(\theta^{(t)}) \right) \sim \text{sub-Gaussian}(\sigma^2)$$

Mixture of samplers

$$\frac{1}{\beta A} \left(G_y^{(t)} - \nabla_{\theta_y} \left(\alpha_1 \mathcal{L}_1(\theta^{(t)}) + \alpha_2 \mathcal{L}_2(\theta^{(t)}) \right) \right) \sim \text{sub-Gaussian}(\sigma^2)$$

Focus of Study

Recall that

$$r(y) = \beta \left(\log Z + \log \frac{\pi^*(y)}{\pi_{\text{ref}}(y)} \right)$$

We want to ask

How fast can
$$r(y) - r(y') - \beta \log \frac{\pi_{\theta(t)}(y)\pi_{\text{ref}}(y')}{\pi_{\text{ref}}(y)\pi_{\theta(t)}(y')}$$
 converge to 0, for $\forall y, y' \in \mathcal{Y}$?
$$=: \delta(y, y'; \theta^{(t)})$$

Results of Exact DPO

- Regime 1: Uniform Sampler
- Regime 2: Known Reward
- Regime 3: Online Sampler

$$\pi^{\mathsf{s1}}(\cdot) = \pi^{\mathsf{s2}}(\cdot) = \mathsf{Uniform}(\mathcal{Y})$$

- Sampling coefficient $\alpha = 2|\mathcal{Y}|^2$
- Initialize $\pi_{\theta^{(0)}} = \pi_{\mathrm{ref}}$ Learning rate $\eta = \frac{1}{\beta^2 |y|}$

Will be used in all regimes

Upper bound

$$\left|\delta(y, y'; \theta^{(T)})\right| \leq 0.588^T, \ \forall y, y' \in \mathcal{Y}$$

• Directly using convexity gives an $O\left(\frac{1}{\tau}\right)$ rate

Define and recall that

$$\begin{split} &\Delta(y,y';\theta) := \sigma(r(y) - r(y')) - \sigma\left(\beta\log\frac{\pi_{\theta}(y)\pi_{\mathsf{ref}}(y')}{\pi_{\mathsf{ref}}(y)\pi_{\theta}(y')}\right) \;, \\ &\delta(y,y';\theta) := r(y) - r(y') - \beta\log\frac{\pi_{\theta}(y)\pi_{\mathsf{ref}}(y')}{\pi_{\mathsf{ref}}(y)\pi_{\theta}(y')} \;. \\ &\pi^{\mathsf{s}}(y,y') := \mathsf{sg}\left(\pi^{\mathsf{s1}}(y)\pi^{\mathsf{s2}}(y') + \pi^{\mathsf{s1}}(y')\pi^{\mathsf{s2}}(y)\right) \end{split}$$

Computing the gradient gives

$$abla_{ heta} \mathcal{L}(heta) = -eta \sum_{y,y'} \pi^{\mathsf{s}}(y,y') \Delta(y,y'; heta) \mathbb{1}_y$$

Holds for all regimes

• Iteration equation for δ :

Holds for all regimes

$$\delta(y, y'; \theta^{(t+1)}) = \delta(y, y'; \theta^{(t)})$$

$$- \eta \beta \alpha(\pi^{s1}, \pi^{s2}) \sum_{y''} \left(\pi^{s}(y, y'') \Delta(y, y''; \theta^{(t)}) - \pi^{s}(y', y'') \Delta(y', y''; \theta^{(t)}) \right)$$

- Plug in $\pi^{s}(y, y') = 2/|\mathcal{Y}|^2$ makes coefficients of Δ identical
- Use $\sigma'_{\min} \le \frac{\sigma(x) \sigma(y)}{x y} \le \frac{1}{4}$ to convert Δ into δ by assuming that

$$\sigma'\left(\log\frac{\pi_{\theta}(y)\pi_{\mathsf{ref}}(y')}{\pi_{\mathsf{ref}}(y)\pi_{\theta}(y')}\right) \geqslant \sigma'_{\min} > \frac{1}{8}$$

We have that

$$\gamma = \max\{1 - 4\eta\beta^{2}A\sigma'_{\min}, \eta\beta^{2}A - 1\} + \eta\beta^{2}A(1 - 4\sigma'_{\min}) \\ |\delta(y_{1}, y_{2}; \theta^{(t+1)})| \le \gamma \max_{y, y'} |\delta(y, y'; \theta^{(t)})|$$

- Plug in η gives $\gamma < 1$
- Go back and verify the assumption on σ_{\min}' and further refine γ

Regime 2: Known Reward

Not practical, only for proof of idea

①
$$\left\{ \begin{array}{l} \pi^{\rm s1}(\cdot) = {\sf Uniform}(\mathcal{Y}) \;, \\ \pi^{\rm s2}(\cdot) = {\sf Uniform}(\mathcal{Y}) \;, \end{array} \right.$$
 ②
$$\left\{ \begin{array}{l} \pi^{\rm s1}(\cdot) \propto {\sf Uniform}(\mathcal{Y}) \cdot \exp(r(\cdot)) \;, \\ \pi^{\rm s2}(\cdot) \propto {\sf Uniform}(\mathcal{Y}) \cdot \exp(-r(\cdot)) \;, \end{array} \right.$$

- Sampling coefficient $\alpha_1 = |\mathcal{Y}|^2$, $\alpha_2 = \sum_{y,y'} \exp(r(y) r(y'))$
- Upper bound

Quadratic convergence!

$$\left|\delta(y, y'; \theta^{(T)})\right| \le 0.5^{2^T - 1}, \ \forall y, y' \in \mathcal{Y}$$

University of Washington — 21

Regime 2: Known Reward

• Taylor expansion at $r(y_1) - r(y_2)$:

$$\Delta(y_1, y_2; \theta^{(t)}) = \sigma'(r(y_1) - r(y_2))\delta(y_1, y_2; \theta^{(t)}) + \frac{\sigma''(\xi_{\mathsf{R}})}{2}\delta(y_1, y_2; \theta^{(t)})^2$$

Recall update

$$\begin{split} \delta(y, y'; \theta^{(t+1)}) &= \delta(y, y'; \theta^{(t)}) \\ &- \eta \beta \alpha(\pi^{\mathsf{s1}}, \pi^{\mathsf{s2}}) \sum_{y''} \left(\pi^{\mathsf{s}}(y, y'') \Delta(y, y''; \theta^{(t)}) - \pi^{\mathsf{s}}(y', y'') \Delta(y', y''; \theta^{(t)}) \right) \end{split}$$

• Setting $\pi^{\scriptscriptstyle S}(y_1,y_2) \propto 1/\sigma' \big(r(y_1)-r(y_2)\big)$ gives

$$\pi^{\mathsf{s}}(y,y'')\Delta(y,y'';\theta^{(t)}) - \pi^{\mathsf{s}}(y',y'')\Delta(y',y'';\theta^{(t)}) = \mathbf{constant} \cdot \delta(y,y';\theta^{(t)}) + \mathbf{quadratic\ term}$$

Regime 2: Known Reward

• The choice of η eliminates the linear term:

$$\delta(a, a'; \theta^{(t+1)}) = (1 - \eta \beta^2 A) \delta(a, a'; \theta^{(t)})$$

$$+ \frac{\eta \beta^2}{2} \sum_{a''} \left(\frac{\sigma''(\xi_{\mathsf{R}}(a, a''; \theta^{(t)}))}{\sigma'(r(a) - r(a''))} \delta(a, a''; \theta^{(t)})^2 - \frac{\sigma''(\xi_{\mathsf{R}}(a', a''; \theta^{(t)}))}{\sigma'(r(a') - r(a''))} \delta(a', a''; \theta^{(t)})^2 \right)$$

• Bounding $\sigma'' \leq \frac{1}{6\sqrt{3}} < 0.097$ and $\sigma' \geq \sigma'(1) > 0.196$ gives $\left| \delta \left(y, y'; \theta^{(t+1)} \right) \right| < 0.5 \max_{a,a'} \delta \left(a, a'; \theta^{(t)} \right)^2$

Regime 3: Online Sampler

Current policy

①
$$\left\{ \begin{array}{l} \pi^{\rm s1}(\cdot) = {\sf Uniform}(\mathcal{Y}) \;, \\ \pi^{\rm s2}(\cdot) = {\sf Uniform}(\mathcal{Y}) \;, \end{array} \right.$$
 ②
$$\left\{ \begin{array}{l} \pi^{\rm s1}(\cdot) \propto {\sf Uniform}(\mathcal{Y}) \cdot (\pi(\cdot)/\pi_{\sf ref}(\cdot))^{\beta} \\ \pi^{\rm s2}(\cdot) \propto {\sf Uniform}(\mathcal{Y}) \cdot (\pi_{\sf ref}(\cdot)/\pi(\cdot))^{\beta} \end{array} \right.$$

- ② equivalent to $\pi^{\rm s1} \propto \exp \left(\beta(\theta-\theta_{\rm ref})\right)$, $\pi^{\rm s2} \propto \exp \left(\beta(\theta_{\rm ref}-\theta)\right)$
- Sampling coefficient $\alpha_1=|\mathcal{Y}|^2$, $\alpha_2=\sum_{\mathcal{Y},\mathcal{Y}'}\left(\frac{\pi(\mathcal{Y})\pi_{\mathrm{ref}}(\mathcal{Y}')}{\pi_{\mathrm{ref}}(\mathcal{Y})\pi(\mathcal{Y}')}\right)^\beta$
- Upper bound

Quadratic convergence!

$$\left| \delta(y, y'; \theta^{(T)}) \right| \le 0.611^{2^{T} - 1}, \ \forall y, y' \in \mathcal{Y}$$

Regime 3: Online Sampler

• Taylor expansion at $\beta \log \frac{\pi(y)\pi_{\mathrm{ref}}(y')}{\pi_{\mathrm{ref}}(y)\pi(y')}$

$$\begin{split} \delta(a,a';\theta^{(t+1)}) &= (1 - \eta \beta^2 A) \delta(a,a';\theta^{(t)}) \\ &- \frac{\eta \beta^2}{2} \sum_{a''} \left(\frac{\sigma''(\xi_{\mathsf{P}}(a,a'';\theta^{(t)}))}{\sigma'(\beta(\theta_a - \theta_{a''})^{(t)})} \delta(a,a'';\theta^{(t)})^2 - \frac{\sigma''(\xi_{\mathsf{P}}(a',a'';\theta^{(t)}))}{\sigma'(\beta(\theta_{a'} - \theta_{a''})^{(t)})} \delta(a',a'';\theta^{(t)})^2 \right) \end{split}$$

• Like Regime 1, assume $\sigma'\Big(\beta(\theta_a-\theta_{a'})\Big)\geq \sigma'_{\min}$ and verify in the end

Empirical DPO

• (For **Regime 2**) Same equation:

$$\mathbb{E}[(G_{a} - G_{a'})^{(t)}] = -\beta A \delta(a, a'; \theta^{(t)})$$

$$- \frac{\beta}{2} \sum_{\underline{a''}} \left(\frac{\sigma''(\xi_{R}(a, a''; \theta^{(t)}))}{\sigma'(r(a) - r(a''))} \delta(a, a''; \theta^{(t)})^{2} - \frac{\sigma''(\xi_{R}(a', a''; \theta^{(t)}))}{\sigma'(r(a') - r(a''))} \delta(a', a''; \theta^{(t)})^{2} \right)$$

$$=: N_{t}(a, a')$$

- When operating under expectation:
 - $\mathbb{E}[\delta(;\theta^{(t+1)})]$ needs $\mathbb{E}\left[\delta(;\theta^{(t)})^2\right]$
 - $\mathbb{E}\left[\delta(;\theta^{(t)})^2\right]$ needs $\mathbb{E}\left[\delta(;\theta^{(t-1)})^4\right]$
 - ...
 - $\mathbb{E}[\delta(;\theta^{(T)})]$ needs $\mathbb{E}\left[\delta(;\theta^{(t)})^n\right]$ for any t,n such that $2^t \cdot n \leq 2^T$

Bounding Moments

With some manipulation, we have Noise

$$\mathbb{E}[\delta(a, a'; \theta^{(t+1)})^{2n}] \leqslant \sum_{k=0}^{2n} {2n \choose k} (6\sigma \sqrt{n})^k \cdot \frac{1}{2^{2n-k}} \max_{a_1, a_2} \mathbb{E}[\delta(a_1, a_2; \theta^{(t)})^{4n-2k}]$$

• Take $T = \log 1/\sigma$, then with sufficiently small σ and any $2^t \cdot n \leq 2^T$,

$$\mathbb{E}[\delta(a, a'; \theta^{(t)})^{2n}] \leqslant \left(12\sqrt{n}\sigma + \frac{1}{2^t}\right)^{2n}$$

This implies

$$\sqrt{\mathbb{E}\left[\delta(y, y'; \theta^{(T)})^2\right]} \le 14\sigma , \ \forall y, y' \in \mathcal{Y}$$

Regime 3?

- $\sigma' \Big(\beta (\theta_a \theta_{a'}) \Big)$ hard to bound under estimation scheme
- If we use Taylor expansion at any point z(a, a'):

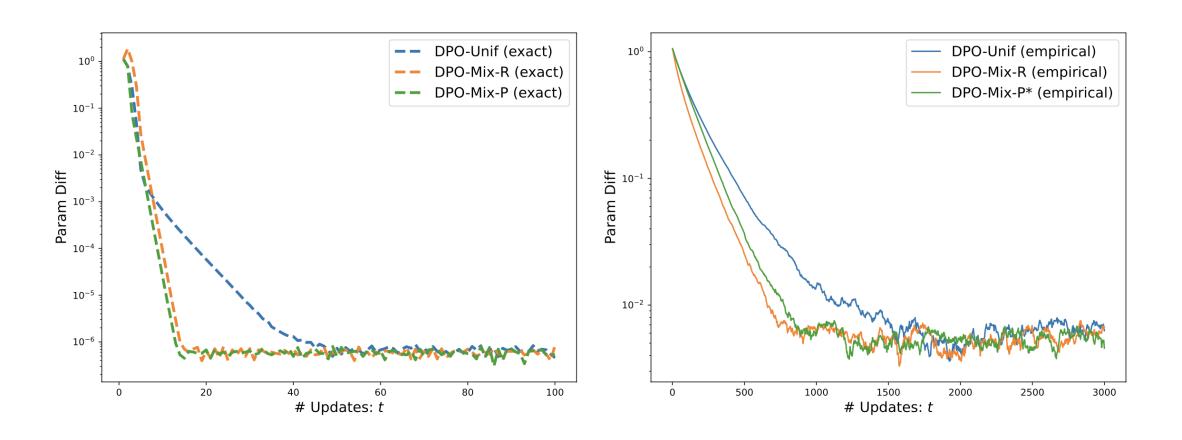
$$\Delta(a, a'; \theta) = \sigma'(z(a, a'))\delta(a, a'; \theta) + \frac{\sigma''(\xi_1(a, a'; \theta))}{2}(r(a) - r(a') - z(a, a'))^2 - \frac{\sigma''(\xi_2(a, a'; \theta))}{2}[\beta(\theta_a - \theta_{a'}) - z(a, a')]^2,$$

- Set $\pi^s(y_1, y_2) \propto 1/\sigma'(z(y_1, y_2))$, try to make
 - $\sigma'(z(y_1, y_2))$ bounded
 - $[r(a)-r(a')-z(a,a')]^2+[eta(heta_a- heta_{a'})-z(a,a')]^2$ not far from δ^2

Regime 3?

- Take $z(y_1, y_2) = \text{clip}(\beta(\theta_{y_1} \theta_{y_2}), [-1,1])$
- Algorithm changes accordingly with a rejection sampling step
- Proof reduces to Regime 2, results are the same
- Can be applied to the exact gradient case for a faster convergence

Numerical Simulations



Safe-RLHF

Algorithm	Iters	Average reward (train)	Win-rate (train)	Average reward (test)	Win-rate (test)
Vanilla DPO	2 3	-1.486 -1.144	67.6% 72.5%	-1.423 -1.203	68.7% 71.7%
On-policy DPO	2 3	-1.478 -1.082	67.6% 73.2%	-1.510 -1.094	65.8% 73.2%
Hybrid GSHF	2 3	-1.517 -1.079	68.5% 74.8%	-1.505 -1.002	66.9% 75.9%
Ours	2 3	-1.457 -0.908	68.1% 75.6%	-1.436 -0.945	67.6% 76.2%

University of Washington ________31

Iterative-Prompt

Algorithm	Iters	Average reward (train)	Win-rate (train)	Average reward (test)	Win-rate (test)
Vanilla DPO	2	1.427	71.4%	1.375	70.0%
	3	2.023	78.4%	2.133	78.8%
On-policy DPO	2	2.106	79.2%	2.157	78.7%
	3	3.131	82.4%	3.327	82.9%
Hybrid GSHF	2	2.116	79.6%	2.224	80.0%
	3	2.386	81.9%	2.500	82.8%
Ours	2	2.026	78.3%	2.068	77.3%
	3	4.149	86.6%	4.221	87.1%

Thank You