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Reinforcement Learning

Games with random 
environments

Robotics Maze

The agent interacts with the environment by choosing actions conditioning on the 
observed sequence of states and rewards:
• Sometimes the uncertainty of “what is the next state and reward” is high
• Sometimes they are totally determined

Stochastic Deterministic

High variance Zero variance

Can we design an algorithm which 
automatically exploits determinism?
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Markov Decision Processes (MDPs)

• State space 𝒮, with size 𝑆

• Action space 𝒜, with size 𝐴

• Planning horizon 𝐻

• Reward function 𝑅ℎ 𝑠, 𝑎 ∈
Δ( 0,1 ) with mean 𝑟ℎ(𝑠, 𝑎) for
ℎ ∈ 𝐻

• Transition model 𝑃ℎ(𝑠′|𝑠, 𝑎)

Probability simplex
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Maximum Transition Support

𝑠1

𝑎

𝑠2

𝑠3

𝑃(𝑠1|𝑠1, 𝑎) = 0.1

𝑃(𝑠2|𝑠1, 𝑎) = 0.4

𝑃(𝑠3|𝑠1, 𝑎) = 0.5

An illustration for Γ = 3

• Γ = max
ℎ,𝑠,𝑎

𝑃ℎ ⋅ 𝑠, 𝑎 0

• For deterministic MDPs, Γ = 1
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• Policy 𝜋 = {𝜋ℎ}ℎ∈[𝐻], where 𝜋ℎ: 𝒮 → 𝒜

• Value functions and Q-functions:

• Optimal policy denoted as 𝜋⋆, with 𝑉ℎ
⋆(𝑠) and 𝑄ℎ

⋆(𝑠, 𝑎)
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Policy and Value Function
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Conditions for MDPs

Totally-bounded reward (TBR)

For any possible trajectory 𝜏 = { 𝑠ℎ , 𝑎ℎ , 𝑟ℎ ℎ=1
𝐻 } ∪ {𝑠𝐻+1} ,

෍
ℎ=1

𝐻

𝑟ℎ ≤ 1.

Time-homogeneous (TH)

For any ℎ, ℎ′ ≤ 𝐻, 𝑃ℎ = 𝑃ℎ′  and 𝑅ℎ = 𝑅ℎ′.

A fair comparison with 
contextual bandits: 

bandits have a single 
step reward ∈ [0,1].
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• Model-based algorithms can be tight under TBR and TH
• Tight: upper bound matches lower bound

• No model-free algorithm is tight under TH
• Model-free: space complexity ≤ 𝑂(𝑆𝐴𝐻)

• Constructing 𝑃 takes 𝑂 𝑆2𝐴𝐻  space
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Previous Results
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Episodic RL for MDPs

• Number of episodes 𝐾

• Play a policy 𝜋𝑘 in episode 𝑘

• Regret

• Minimax (worst case) regret, tight bounds

• Upper bound (main order term, TBR & TH): ෨𝑂 𝑆𝐴𝐾  [Zanette and Brunskill, 2019, 
Zhang et al., 2021a]

• Lower bound (TBR & TH): Ω 𝑆𝐴𝐾  (a contextual bandit as a special MDP)

෨𝑂 hides poly log terms
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• Some MDPs are easier than the others
• Applying an algorithm on them yields regrets better than worst-case

• Example: Deterministic MDPs
• Regret lower bound Ω 𝑆𝐴  (TBR & TH), no dependency on 𝐾

• Specially designed algorithms can have regret upper bound 𝑂(𝑆𝐴)
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Problem-Dependent Regret

• Maintain a list of unexplored (𝑠, 𝑎) pairs

• In each episode, if anything in the list is 
reachable, visit it and remove from the list

• After 𝑆𝐴 episodes the accurate model is 
established!
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• Define suitable (problem-dependent) quantities to characterize the 
difficulty of each MDP

• Design generic algorithms which
• Preserve minimax optimal regret

• Automatically adapt to structures of MDPs: regrets depend on the above 
quantities

11

Main Contribution
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Some Problem-Dependent Results

Gap-dependent regret [Even-Dar et al., 2006, Auer et al., 2008, 
Simchowitz and Jamieson, 2019, Xu et al., 2021, Yang et al., 2021, …]
• Proportional to the inverse of sub-optimality gap on optimal Q-functions
• May not recover minimax optimal regret, beyond scope of this work

First-order regret

• Tabular MDP (TBR): ෨𝑂 𝑉1
⋆(𝑠0)𝐻𝑆𝐴𝐾  [Jin et al., 2020]

• Linear function approximation: ෨𝑂 𝑉1
⋆(𝑠0)𝑑3𝐻3𝐾  [Wagenmaker et al., 2022]

• Cannot characterize deterministic MDPs!

Optimal value function
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Maximum per-step conditional variance[Zanette and Brunskill, 2019]
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Variances

• 𝕍 𝑋 = 𝔼 𝑋 − 𝔼𝑋 2 , 𝕍 𝑝, 𝑥 = σ𝑖 𝑥𝑖 − σ𝑗 𝑝𝑗𝑥𝑗
2

• Their regret (TH): ෨𝑂 𝐻ℚ⋆ ⋅ 𝑆𝐴𝐾 + 𝐻5/2𝑆2𝐴

• Not minimax optimal: ෨𝑂 𝐻𝑆𝐴𝐾  because ℚ⋆ can be as large as Ω(1)

• Not optimal for deterministic MDPs: ෨𝑂 𝐻5/2𝑆2𝐴  when ℚ⋆ = 0

• ℚ⋆ is not sufficient for our goal, need more definitions!

Variance operator

Example of large variances:

• 𝑅ℎ 𝑠, 𝑎 = Unif{0,1}

• 𝑃𝑠,𝑎,ℎ = (0.5, 0.5) and 𝑉ℎ+1
⋆ = (0, 1)

Example of small variances:

• Deterministic MDPs

• 𝑉ℎ+1
⋆ 𝑠 = 𝑉ℎ+1

⋆ 𝑠′  for any 𝑠, 𝑠′
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With ℚ⋆ being insufficient, we propose two novel definitions! 
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Variances (cont’d)

Total multi-step conditional variance

For any trajectory 𝜏:

With Var𝐾
Σ ≔ σ𝑘=1

𝐾 Var
𝜏𝑘
Σ  as the total variance in episodic RL.
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Variances (cont’d)

Maximum policy-value variance 

For any policy 𝜋:

Further define Var𝜋 ≔ max
𝑠

Var1
𝜋 𝑠 .

Maximum policy-value variance is defined as Var⋆ ≔ max
𝜋

Var𝜋.
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• Var𝜏
Σ ≤ 𝐻ℚ⋆

• They could all be Ω(𝐻) (TBR) in the worst case

• 𝐕𝐚𝐫𝝉
𝚺 ≤ ෩𝑶(𝟏) (TBR) with high probability if 𝜏 is generated by a policy 𝜋

• Var⋆ ≤ 𝑉1
⋆ ≤ 1 (TBR)

• Better than first-order!

• Deterministic MDPs: Var𝜏
Σ = Var⋆ = 0

• Var⋆ = 0 ⟹ Var𝜏
Σ = 0

• Reverse is not true!

16

Comparing Variances



University of Washington 17

Var𝜏
Σ = 0 < Var⋆

𝑠1

𝑎1

𝑎2

𝑠2

𝑃(𝑠1| ∗, 𝑎1) = 0.5 𝑃(𝑠2| ∗, 𝑎1) = 0.5

𝑃(𝑠2| ∗, 𝑎2) = 0.5𝑃(𝑠1| ∗, 𝑎2) = 0.5

𝑅 ∗, 𝑎1 = 1/𝐻

𝑅 ∗, 𝑎2 = 0

• 𝜋ℎ
⋆ 𝑠 = 𝑎1

• 𝑉ℎ
⋆ 𝑠 = (𝐻 − ℎ + 1)/𝐻, same 

across the same time step

• Var𝜏
Σ = 0

• 𝜋𝐻 𝑠1 = 𝑎2 and any other action 
be 𝑎1

• Total reward ∈ {1, 1 − 1/𝐻}

• Var⋆ > 0
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Var𝜏
Σ = 1/4 > Var⋆ ≈ 0

• Var⋆ ≤ max
𝜋

𝑉1
𝜋 𝑠1 ≤ 𝑝

• Take 𝑝 → 0
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Model-Based Results (TBR & TH)

Only log dependency on 𝐻

Totally-bounded reward Time-homogeneous



University of Washington

• Transition: ෠𝑃𝑠,𝑎
𝑘 𝑠′ =

𝑛𝑘 𝑠,𝑎,𝑠′

𝑛𝑘(𝑠,𝑎)

• 𝑛𝑘(𝑠, 𝑎) : total visitation to (𝑠, 𝑎) before episode 𝑘

• 𝑛𝑘(𝑠, 𝑎, 𝑠′) : total visitation to (𝑠, 𝑎, 𝑠′) before episode 𝑘

• Reward: Ƹ𝑟𝑘 𝑠, 𝑎 =
𝜃𝑘(𝑠,𝑎)

𝑛𝑘(𝑠,𝑎)

• 𝜃𝑘 𝑠, 𝑎 : summation of observed reward on (𝑠, 𝑎) before episode 𝑘

• Variance of reward: ෣VarR𝑘 𝑠, 𝑎 =
𝜙𝑘 𝑠,𝑎

𝑛𝑘(𝑠,𝑎)
− Ƹ𝑟𝑘 𝑠, 𝑎 2

• 𝜙𝑘 𝑠, 𝑎 : summation of squared observed reward on (𝑠, 𝑎) before episode 𝑘

20

Model Estimation
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Optimism

Value estimation
• In episode 𝑘, inductively calculate

𝑄ℎ
𝑘 𝑠, 𝑎 = Ƹ𝑟𝑘 𝑠, 𝑎 + ෠𝑃𝑠,𝑎

𝑘 𝑉ℎ+1
𝑘 + 𝑏ℎ

𝑘(𝑠, 𝑎)

• 𝑏ℎ
𝑘(𝑠, 𝑎): bonus function to account for empirical error in Ƹ𝑟𝑘 𝑠, 𝑎  and ෠𝑃𝑠,𝑎

𝑘 𝑉ℎ+1
𝑘

• Policy 𝜋ℎ
𝑘 𝑠 = arg max

𝑎
𝑄ℎ

𝑘(𝑠, 𝑎)

• Value 𝑉ℎ
𝑘(𝑠) = max

𝑎
𝑄ℎ

𝑘(𝑠, 𝑎)

Optimism
𝑄ℎ

𝑘 𝑠, 𝑎 ≥ 𝑄ℎ
⋆(𝑠, 𝑎)

• Large bonus ensures optimism, but incurs large regret
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Bennett’s Inequality to introduce variances
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Bonus

Exploration bonus with empirical variances (𝜄 = ෨𝑂 1 )

• Change to MVP: using empirical variances of rewards
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Analysis

Regret decomposition

• By optimism σ𝑘 𝑉1
⋆ 𝑠1

𝑘 − 𝑉1
𝜋𝑘

𝑠1
𝑘 ≤ σ𝑘 𝑉1

𝑘 𝑠1
𝑘 − 𝑉1

𝜋𝑘
𝑠1

𝑘 ≾ σ𝑘,ℎ 𝑏ℎ
𝑘(𝑠ℎ

𝑘 , 𝑎ℎ
𝑘)

Cauchy-Schwarz: σ𝑘,ℎ
𝑤ℎ

𝑘

𝑛𝑘 𝑠ℎ
𝑘,𝑎ℎ

𝑘 ≤ σ𝑘,ℎ
1

𝑛𝑘 𝑠ℎ
𝑘,𝑎ℎ

𝑘 σ𝑘,ℎ 𝑤ℎ
𝑘 ≾ 𝑆𝐴 σ𝑘,ℎ 𝑤ℎ

𝑘

Regret main order term is ෨𝑂 𝑆𝐴𝑊 , where
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Analysis: Var𝐾
Σ

By 𝕍 𝑋 + 𝑌 ≤ 2𝕍 𝑋 + 2𝕍 𝑌 ,

𝑊 ≤ 2 σ𝑘=1
𝐾 σℎ=1

𝐻 𝕍 𝑅 𝑠ℎ
𝑘 , 𝑎ℎ

𝑘 + 𝕍 𝑃
𝑠ℎ

𝑘,𝑎ℎ
𝑘 , 𝑉ℎ+1

⋆  

+ 2 σ𝑘=1
𝐾 σℎ=1

𝐻 𝕍 𝑃
𝑠ℎ

𝑘,𝑎ℎ
𝑘 , 𝑉ℎ+1

𝜋𝑘
− 𝑉ℎ+1

⋆

Var𝐾
Σ

≤ ෨𝑂 𝑊 , lower 

order term
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Analysis: Var⋆

From estimation to expectation

• Each inner sum is an unbiased estimation of 𝐕𝐚𝐫𝟏
𝝅𝒌

𝒔𝟏
𝒌 !

• Naïvely bounding 𝑊 using a martingale concentration inequality yields an 𝑯-
dependency on lower order terms

Solution: Truncation

• Truncate each inner sum to ෨𝑂(1) before using martingale concentration inequality

• Effective truncation happens with low probability



University of Washington 27

Model-Free Results

Space ≤ 𝑂(𝑆𝐴𝐻). No 
model estimation!
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Value Estimation

Naïve update rule:
• The earlier a sample is collected, the more deviation it is from 𝑄ℎ

⋆  because 𝑉 changes

By some means 
of estimation

Reference value functions from UCB-Advantage [Zhang et al., 2020]

• Assume 𝑉ℎ
ref is some fixed value and approximates 𝑽𝒉

⋆  well

• ෣𝑃𝑠,𝑎,ℎ𝑉ℎ+1
ref = ෣𝑃𝑠,𝑎,ℎ𝑉ℎ+1

ref , we can use all the data to estimate 𝑃𝑠,𝑎,ℎ  (low deviation)

• Deviation in ෣𝑃𝑠,𝑎,ℎ(𝑉ℎ+1 − 𝑉ℎ+1
ref ) is low order
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• Let 𝑉ℎ
ref be snapshots of 𝑉ℎ with a certain frequency

• Only once in UCB-Advantage?
• 𝑉ℎ

ref − 𝑉ℎ
⋆ ≤ either 𝐻 (before snapshot) or 𝛽 (the desired approximation error)

• Less flexibility, making the main order term variance-independent

• Whenever 𝑛ℎ(𝑠, 𝑎) doubles (uncapped-doubling)?

• Gives arbitrary small 𝑉ℎ
ref − 𝑉ℎ

⋆ (approximation error)

• Each update invalidates previous 𝑉ℎ
ref, causing another accumulated bias which is a 

variance-independent main order term

• Capped-doubling!
• Balances between approximation error and data waste

29

Learn Reference Values
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Capped-Doubling

Design
• Set ℛ = 𝑁𝑖 = ෩Θ 22𝑖𝐻3𝑆𝐴  | 𝑖 ≤ 𝑖⋆

• When σ𝑎 𝑛ℎ(𝑠, 𝑎) = 𝑁𝑖 ∈ ℛ for some 𝑖, assign 𝑉ℎ
ref 𝑠 ← 𝑉ℎ(𝑠)

• Ensures 𝑉ℎ
ref 𝑠 − 𝑉ℎ

⋆ 𝑠 ≤ 𝛽𝑖 = 𝐻/2𝑖

Capped to 𝑖⋆ updates!

Motivation
• 𝑖⋆ dictates the final precision we want

• Setting 𝑖⋆ not too large helps reduce data waste on ෣𝑃𝑠,𝑎,ℎ(𝑉ℎ+1 − 𝑉ℎ+1
ref ) 

• Intermediate updates give a successively halving error sequence
• It makes analysis more flexible than one-time update



University of Washington 32

Bonus

Similar as MVP-V, we need variance terms for 𝑉ref, 𝑉 − 𝑉ref and 𝑅

• 𝜈ℎ
ref,𝑘: variance of 𝑉ref at the beginning of episode 𝑘

• Ƽ𝜈ℎ
𝑘: variance of 𝑉 − 𝑉ref at the beginning of episode 𝑘

• 𝑛ℎ
𝑘: number of visitation at the beginning of episode 𝑘

• 𝑛ුℎ
𝑘: number of visitation after the last 𝑉ref update and before episode 𝑘
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• UCB-Advantage-V cannot achieve ෨𝑂 𝑆𝐴𝐾  regret under TBR & TH

• Is there a model-free algorithm achieving tight regret under TBR & 
TH?

• Hardness:
• How to apply updates to all 𝐻 layers when any (𝑠ℎ , 𝑎ℎ) is collected?

41

Limitation of Model-Free Algorithms
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• On deterministic MDPs, UCB-Advantage-V has regret ∝ 𝐾1/4, not a 
constant as MVP-V

• Is there a generic model-free algorithm achieving constant regret on 
deterministic MDPs?

• Hardness:
• Using all historical data to estimate value function is biased

• To converge in constant steps, must discard initial data

42

Limitation of Model-Free Algorithms (cont’d)
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