# Variance-Dependent Regret Bounds of Model-Based and Model-Free RL

### **Runlong Zhou**

Apr 26 2023

**Qualification Presentation** 

### Acknowledgement

This is a joint work with

Zihan Zhang and Simon Du

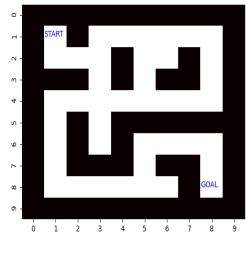
### **Reinforcement Learning**



Games with random environments



**Robotics** 



Maze

Can we design an algorithm which The agent interacts woobserved sequence of automatically exploits determinism?

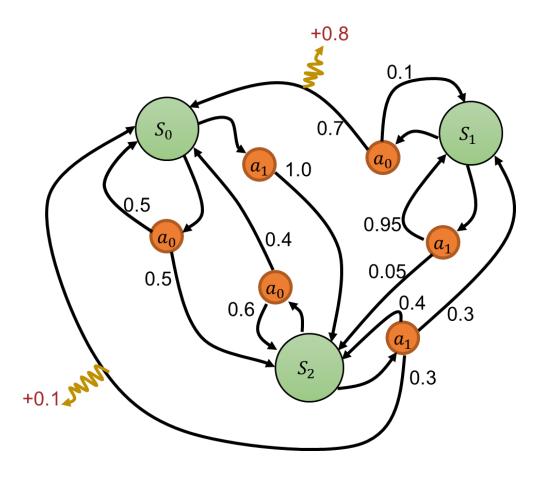
litioning on the. **Determinis** 

Sometimes the uncertainty of "what is the next state and reward" is high Zero variance
 Sometimes they are totally determined

University of Washington

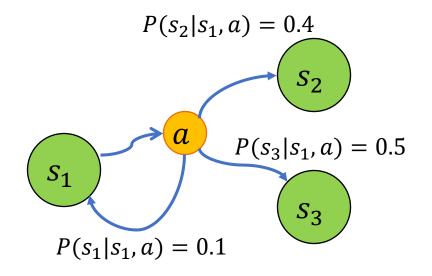
### Markov Decision Processes (MDPs)

- **State** space S, with size S
- Action space  $\mathcal{A}$ , with size A
- Planning horizon H
- Reward function  $R_h(s,a) \in \Delta([0,1])$  with mean  $r_h(s,a)$  for  $h \in [H]$  Probability simplex
- Transition model  $P_h(s'|s,a)$



### **Maximum Transition Support**

- $\Gamma = \max_{h,s,a} ||P_h(\cdot|s,a)||_0$
- For **deterministic** MDPs,  $\Gamma=1$



An illustration for  $\Gamma = 3$ 

### **Policy and Value Function**

- Policy  $\pi = {\pi_h}_{h \in [H]}$ , where  $\pi_h : \mathcal{S} \to \mathcal{A}$
- Value functions and Q-functions:

$$V_h^{\pi}(s) := \mathbb{E}_{\pi} \left[ \sum_{t=h}^{H} r_t \mid s_h = s \right],$$
  $Q_h^{\pi}(s, a) := \mathbb{E}_{\pi} \left[ \sum_{t=h}^{H} r_t \mid (s_h, a_h) = (s, a) \right].$ 

• Optimal policy denoted as  $\pi^*$ , with  $V_h^*(s)$  and  $Q_h^*(s,a)$ 

#### **Conditions for MDPs**

#### **Totally-bounded reward (TBR)**

For any possible trajectory 
$$\tau = \{(s_h, a_h, r_h)_{h=1}^H\} \cup \{s_{H+1}\}$$
, 
$$\sum_{h=1}^H r_h \leq 1.$$

A fair comparison with contextual bandits: bandits have a single step reward  $\in [0,1]$ .

#### Time-homogeneous (TH)

For any  $h, h' \leq H$ ,  $P_h = P_{h'}$  and  $R_h = R_{h'}$ .

#### **Previous Results**

- Model-based algorithms can be tight under TBR and TH
  - Tight: upper bound matches lower bound

- No model-free algorithm is tight under TH
  - Model-free: space complexity  $\leq O(SAH)$ 
    - Constructing P takes  $O(S^2AH)$  space

### **Episodic RL for MDPs**

- Number of episodes *K*
- Play a policy  $\pi^k$  in episode k
- Regret

$$\mathsf{Regret}(K) := \sum_{k=1}^K (V_1^\star(s_1^k) - V_1^{\pi^k}(s_1^k)).$$
 
$$\tilde{o} \text{ hides poly log terms}$$

• Minimax (worst case) regret, tight bounds



- Upper bound (main order term, TBR & TH):  $\tilde{O}(\sqrt{SAK})$  [Zanette and Brunskill, 2019, Zhang et al., 2021a]
- Lower bound (TBR & TH):  $\Omega(\sqrt{SAK})$  (a contextual bandit as a special MDP)

### **Problem-Dependent Regret**

- Some MDPs are easier than the others.
  - Applying an algorithm on them yields regrets better than worst-case
  - Example: **Deterministic** MDPs
    - Regret lower bound  $\Omega(SA)$  (TBR & TH), no dependency on K
    - Specially designed algorithms can have regret upper bound O(SA)
      - Maintain a list of unexplored (s, a) pairs
      - In each episode, if anything in the list is reachable, visit it and remove from the list
      - After *SA* episodes the **accurate model** is established!

#### **Main Contribution**

- Define suitable (problem-dependent) quantities to characterize the difficulty of each MDP
- Design generic algorithms which
  - Preserve minimax optimal regret
  - Automatically adapt to structures of MDPs: regrets depend on the above quantities

### **Some Problem-Dependent Results**

Gap-dependent regret [Even-Dar et al., 2006, Auer et al., 2008, Simchowitz and Jamieson, 2019, Xu et al., 2021, Yang et al., 2021, ...]

- Proportional to the inverse of sub-optimality gap on optimal Q-functions
- May **not** recover **minimax** optimal regret, beyond scope of this work

Optimal value function

#### First-order regret



• Linear function approximation:  $\tilde{O}(\sqrt{V_1^{\star}(s_0)d^3H^3K})$  [Wagenmaker et al., 2022]

Cannot characterize deterministic MDPs!

#### **Variances**

#### Maximum per-step conditional variance [Zanette and Brunskill, 2019]

$$\mathbb{Q}^* := \max_{h,s,a} \{ \mathbb{V}(R_h(s,a)) + \mathbb{V}(P_{s,a,h}, V_{h+1}^*) \}.$$

#### Variance operator

• 
$$\mathbb{V}(X) = \mathbb{E}[(X - \mathbb{E}X)^2], \mathbb{V}(p, x) = \sum_i (x_i - \sum_i p_i x_i)^2$$

Example of large variances:

+ Example of **small** variances:

•  $R_h(s, a) = \text{Unif}_{\{0,1\}}$ 

- peca Deterministic MDPs
- $P_{s,a,h} = (0.5, 0.5)$  and  $V_{h+1}^{\star} = (0, 1)$  :  $\tilde{O}(\cdot V_{h+1}^{\star}(s) = V_{h+1}^{\star}(s'))$  for any s, s'
- Q\* is not sufficient for our goal, need more definitions!

### Variances (cont'd)

#### **Total multi-step conditional variance**

For any trajectory  $\tau$ :

$$\mathsf{Var}^\Sigma_\tau := \sum_{h=1}^H (\mathbb{V}(R_h(s_h, a_h)) + \mathbb{V}(P_{s_h, a_h, h}, V_{h+1}^\star)).$$

With  $\operatorname{Var}_K^{\Sigma} \coloneqq \sum_{k=1}^K \operatorname{Var}_{\tau^k}^{\Sigma}$  as the total variance in episodic RL.

### Variances (cont'd)

#### Maximum policy-value variance

For any policy  $\pi$ :

$$\mathsf{Var}_1^\pi(s) := \mathbb{E}_\pi \left[ \left. \sum_{h=1}^H \left( \mathbb{V}(R_h(s_h, a_h)) + \mathbb{V}(P_{s_h, a_h, h}, V_{h+1}^\pi) \right) \, \right| \ s_1 = s 
ight].$$

Further define  $Var^{\pi} := \max_{s} Var_1^{\pi}(s)$ .

**Maximum policy-value variance** is defined as  $Var^* := \max_{\pi} Var^{\pi}$ .

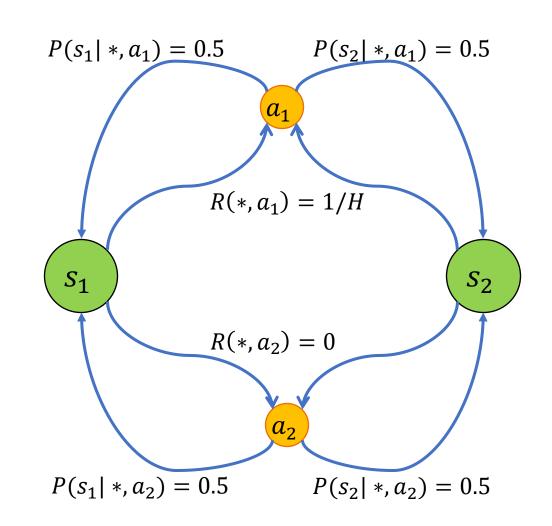
### **Comparing Variances**

- $Var_{\tau}^{\Sigma} \leq H\mathbb{Q}^{\star}$ 
  - They could all be  $\Omega(H)$  (TBR) in the worst case
  - $\mathrm{Var}_{ au}^{\Sigma} \leq \widetilde{O}(1)$  (TBR) with high probability if au is generated by a policy  $\pi$
- $Var^* \leq V_1^* \leq 1$  (TBR)
  - Better than first-order!
- Deterministic MDPs:  $Var_{\tau}^{\Sigma} = Var^{\star} = 0$
- $Var^* = 0 \implies Var^{\Sigma}_{\tau} = 0$ 
  - Reverse is not true!

$$\mathrm{Var}^\Sigma_{ au} = 0 < \mathrm{Var}^\star$$

$$\bullet \ \pi_h^{\star}(s) = a_1$$

- $V_h^{\star}(s) = (H h + 1)/H$ , same across the same time step
- $Var_{\tau}^{\Sigma} = 0$
- $\pi_H(s_1) = a_2$  and any other action be  $a_1$ 
  - Total reward  $\in \{1, 1-1/H\}$
  - $Var^* > 0$

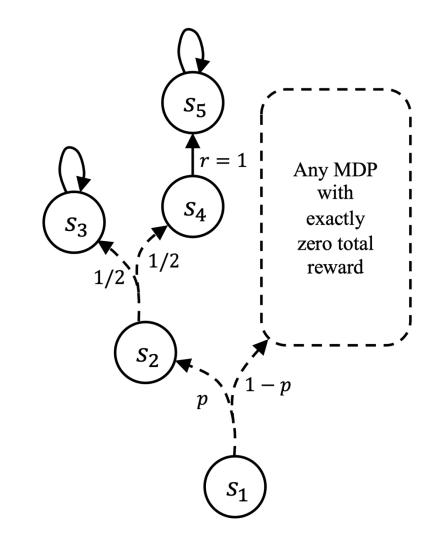


17

$$Var_{\tau}^{\Sigma} = 1/4 > Var^{\star} \approx 0$$

$$\operatorname{Var}_{(k)}^{\Sigma} \geqslant \mathbb{V}(R(s_2, a)) + \mathbb{V}(P_{s_2, a}, V_3^{\star}) = \frac{1}{4}.$$

- $\operatorname{Var}^{\star} \leq \max_{\pi} V_1^{\pi}(s_1) \leq p$ 
  - Take  $p \to 0$



### Model-Based Results (TBR & TH)







Totally-bounded reward

Time-homogeneous

Only log dependency on H



| Algorithm                             | Regret                                                             | Variance-<br>Dependent | Stochastic-<br>Optimal | Deterministic-<br>Optimal | Horizon-<br>Free |
|---------------------------------------|--------------------------------------------------------------------|------------------------|------------------------|---------------------------|------------------|
| Euler<br>Zanette and Brunskill [2019] | $\widetilde{O}(\sqrt{H\mathbb{Q}^{\star}\cdot SAK} + H^{5/2}S^2A)$ | Yes                    | No                     | No                        | No               |
|                                       | $\widetilde{O}(\sqrt{SAK} + H^{5/2}S^2A)$                          | No                     | Yes                    | No                        | No               |
| MVP Zhang et al. [2021a]              | $\widetilde{O}(\sqrt{SAK} + S^2A)$                                 | No                     | Yes                    | No                        | Yes              |
| MVP-V<br>This work                    | $\widetilde{O}(\sqrt{\min\{Var^\Sigma_K,Var^*K\}SA}+\Gamma SA)$    | Yes                    | Yes                    | Yes                       | Yes              |

#### **Model Estimation**

- Transition:  $\hat{P}_{s,a}^k(s') = \frac{n^k(s,a,s')}{n^k(s,a)}$ 
  - $n^k(s,a)$ : total visitation to (s,a) before episode k
  - $n^k(s, a, s')$ : total visitation to (s, a, s') before episode k
- Reward:  $\hat{r}^k(s,a) = \frac{\theta^k(s,a)}{n^k(s,a)}$ 
  - $\theta^k(s,a)$ : summation of observed reward on (s,a) before episode k
- Variance of reward:  $\widehat{\text{VarR}}^k(s, a) = \frac{\phi^k(s, a)}{n^k(s, a)} \hat{r}^k(s, a)^2$ 
  - $\phi^k(s,a)$ : summation of **squared** observed reward on (s,a) before episode k

### **Optimism**

#### Value estimation

In episode k, inductively calculate

$$Q_h^k(s,a) = \hat{r}^k(s,a) + \hat{P}_{s,a}^k V_{h+1}^k + b_h^k(s,a)$$

- $b_h^k(s,a)$ : bonus function to account for empirical error in  $\hat{r}^k(s,a)$  and  $\hat{P}_{s,a}^k V_{h+1}^k$
- Policy  $\pi_h^k(s) = \arg \max_a Q_h^k(s, a)$
- Value  $V_h^k(s) = \max_{a} Q_h^k(s, a)$

#### **Optimism**

$$Q_h^k(s,a) \ge Q_h^{\star}(s,a)$$

• Large bonus ensures optimism, but incurs large regret

#### **Bonus**

#### Bennett's Inequality to introduce variances

$$\mathbb{P}\left[\left|\mathbb{E}[Z] - \frac{1}{n}\sum_{i=1}^{n} Z_i\right| > \sqrt{\frac{2\mathbb{V}[Z]\ln(2/\delta)}{n}} + \frac{b\ln(2/\delta)}{n}\right] \leqslant \delta.$$

### Exploration bonus with empirical variances ( $\iota = \tilde{O}(1)$ )

$$b_h(s,a) \leftarrow 4\sqrt{\frac{\mathbb{V}(\hat{P}_{s,a}, V_{h+1})\iota}{\max\{n(s,a),1\}}} + 2\sqrt{\frac{\widehat{\mathsf{VarR}}(s,a)\iota}{\max\{n(s,a),1\}}} + \frac{21\iota}{\max\{n(s,a),1\}};$$

Change to MVP: using empirical variances of rewards

### **Analysis**

#### Regret decomposition

• By optimism 
$$\sum_{k} \left( V_{1}^{\star}(s_{1}^{k}) - V_{1}^{\pi^{k}}(s_{1}^{k}) \right) \leq \sum_{k} \left( V_{1}^{k}(s_{1}^{k}) - V_{1}^{\pi^{k}}(s_{1}^{k}) \right) \lesssim \sum_{k,h} b_{h}^{k}(s_{h}^{k}, a_{h}^{k})$$

$$b_h(s,a) \leftarrow 4\sqrt{\frac{\mathbb{V}(\widehat{P}_{s,a},V_{h+1})\iota}{\max\{n(s,a),1\}}} + 2\sqrt{\frac{\widehat{\mathsf{VarR}}(s,a)\iota}{\max\{n(s,a),1\}}} + \frac{21\iota}{\max\{n(s,a),1\}};$$

Cauchy-Schwarz: 
$$\sum_{k,h} \sqrt{\frac{w_h^k}{n^k(s_h^k,a_h^k)}} \le \sqrt{\sum_{k,h} \frac{1}{n^k(s_h^k,a_h^k)}} \sqrt{\sum_{k,h} w_h^k} \lesssim \sqrt{SA\sum_{k,h} w_h^k}$$

### Regret main order term is $\tilde{O}(\sqrt{SAW})$ , where

$$W = \sum_{k=1}^{K} \sum_{h=1}^{H} (\mathbb{V}(R(s_h^k, a_h^k)) + \mathbb{V}(P_{s_h^k, a_h^k}, V_{h+1}^{\pi^k}))$$

### Analysis: $Var_K^{\Sigma}$

$$\mathsf{Var}^\Sigma_ au := \sum_{h=1}^H (\mathbb{V}(R_h(s_h,a_h)) + \mathbb{V}(P_{s_h,a_h,h},V^\star_{h+1})).$$

$$W = \sum_{k=1}^{K} \sum_{h=1}^{H} (\mathbb{V}(R(s_h^k, a_h^k)) + \mathbb{V}(P_{s_h^k, a_h^k}, V_{h+1}^{\pi^k}))$$

$$\begin{aligned} \operatorname{By} \mathbb{V}(X+Y) &\leq 2\mathbb{V}(X) + 2\mathbb{V}(Y), \\ W &\leq 2\sum_{k=1}^K \sum_{h=1}^H \left(\mathbb{V}\left(R\left(s_h^k, a_h^k\right)\right) + \mathbb{V}\left(P_{s_h^k, a_h^k}, V_{h+1}^\star\right)\right) \\ &+ 2\sum_{k=1}^K \sum_{h=1}^H \mathbb{V}\left(P_{s_h^k, a_h^k}, V_{h+1}^{\pi^k} - V_{h+1}^\star\right) &\leq \tilde{o}(\sqrt{W}), \operatorname{lower} \\ & \operatorname{order term} \end{aligned}$$

### Analysis: Var\*

$$\mathsf{Var}_1^\pi(s) := \mathbb{E}_\pi \left[ \left. \sum_{h=1}^H \left( \mathbb{V}(R_h(s_h, a_h)) + \mathbb{V}(P_{s_h, a_h, h}, V_{h+1}^\pi) \right) \, \right| \ s_1 = s \right].$$

$$W = \sum_{k=1}^{K} \sum_{h=1}^{H} (\mathbb{V}(R(s_h^k, a_h^k)) + \mathbb{V}(P_{s_h^k, a_h^k}, V_{h+1}^{\pi^k}))$$

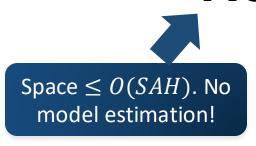
#### From estimation to expectation

- Each inner sum is **an unbiased estimation of**  $\mathrm{Var}_1^{\pi^k}(s_1^k)!$
- Naïvely bounding W using a martingale concentration inequality yields an Hdependency on lower order terms

#### Solution: Truncation

- Truncate each inner sum to  $\tilde{O}(1)$  before using martingale concentration inequality
- Effective truncation happens with low probability

### **Model-Free Results**



| Algorithm                                        | Regret                                                                                | Variance-<br>Dependent | Stochastic-<br>Optimal |
|--------------------------------------------------|---------------------------------------------------------------------------------------|------------------------|------------------------|
| Q-learning (UCB-B) Jin et al. [2018]             | $\widetilde{O}(\sqrt{H^4SAK} + H^{9/2}S^{3/2}A^{3/2})$                                | No                     | No                     |
| UCB-Advantage Zhang et al. [2020]                | $\widetilde{O}(\sqrt{H^3SAK} + \sqrt[4]{H^{33}S^8A^6K})$                              | No                     | Yes                    |
| Q-EarlySettled-<br>Advantage<br>Li et al. [2021] | $\widetilde{O}(\sqrt{H^3SAK} + H^6SA)$                                                | No                     | Yes                    |
| UCB-Advantage-V<br>This work                     | $\widetilde{O}(\sqrt{\min\{Var_K^\Sigma,Var^\star K\}HSA} + \sqrt[4]{H^{15}S^5A^3K})$ | Yes                    | Yes                    |

#### **Value Estimation**

By some means of estimation

Naïve update rule:  $Q_h(s,a) \leftarrow \widehat{P_{s,a,h}V_{h+1}} + \widehat{r}_h(s,a) + b_h^k(s,a)$ 

• The earlier a sample is collected, the more deviation it is from  $Q_h^{\star}$  because V changes

Reference value functions from UCB-Advantage [Zhang et al., 2020]

$$Q_h(s,a) \leftarrow \widehat{P_{s,a,h}V_{h+1}^{\text{ref}}} + P_{s,a,h}(\widehat{V_{h+1}} - V_{h+1}^{\text{ref}}) + \widehat{r}_h(s,a) + b_h^k(s,a),$$

- Assume  $V_h^{\mathrm{ref}}$  is some **fixed** value and **approximates**  $V_h^{\star}$  well
  - $P_{s,a,h}V_{h+1}^{\text{ref}} = \widehat{P_{s,a,h}}V_{h+1}^{\text{ref}}$ , we can use all the data to estimate  $P_{s,a,h}$  (low deviation)
  - Deviation in  $P_{s,a,h}(V_{h+1} V_{h+1}^{ref})$  is low order

#### **Learn Reference Values**

- Let  $V_h^{\text{ref}}$  be snapshots of  $V_h$  with a certain **frequency** 
  - Only once in UCB-Advantage?
    - $V_h^{\text{ref}} V_h^{\star} \leq \text{either } H$  (before snapshot) or  $\beta$  (the desired approximation error)
    - Less flexibility, making the main order term variance-independent
  - Whenever  $n_h(s, a)$  doubles (uncapped-doubling)?
    - Gives arbitrary small  $V_h^{\rm ref} V_h^{\star}$  (approximation error)
    - Each update invalidates previous  $V_h^{\rm ref}$ , causing another accumulated bias which is a variance-independent main order term
  - Capped-doubling!
    - Balances between approximation error and data waste

### **Capped-Doubling**

Capped to  $i^*$  updates!

#### Design

- Set  $\mathcal{R} = \{N_i = \widetilde{\Theta}(2^{2i}H^3SA) \mid i \leq i^*\}$
- When  $\sum_{a} n_h(s, a) = N_i \in \mathcal{R}$  for some i, assign  $V_h^{\text{ref}}(s) \leftarrow V_h(s)$ 
  - Ensures  $V_h^{\text{ref}}(s) V_h^{\star}(s) \le \beta_i = H/2^i$

#### Motivation

- $i^*$  dictates the final precision we want
  - Setting  $i^*$  not too large helps reduce data waste on  $P_{s,a,h}(\widehat{V_{h+1}} V_{h+1}^{\mathrm{ref}})$
- Intermediate updates give a successively halving error sequence
  - It makes analysis more flexible than one-time update

#### **Bonus**

$$Q_h(s,a) \leftarrow \widehat{P_{s,a,h}V_{h+1}^{\text{ref}}} + P_{s,a,h}(\widehat{V_{h+1}} - V_{h+1}^{\text{ref}}) + \widehat{r}_h(s,a) + b_h^k(s,a),$$

Similar as MVP-V, we need variance terms for  $V^{\text{ref}}$ ,  $V - V^{\text{ref}}$  and R

$$b \leftarrow 4\sqrt{\frac{\nu^{\mathsf{ref}}\,\iota}{n}} + 4\sqrt{\frac{\widecheck{\nu}\iota}{\widecheck{n}}} + 2\sqrt{\frac{\widehat{\mathsf{VarR}}_h\iota}{n}} + \frac{90H\iota}{\widecheck{n}};$$

- $v_h^{\text{ref},k}$ : variance of  $V^{\text{ref}}$  at the beginning of episode k
- $\check{v}_h^k$ : variance of  $V-V^{\mathrm{ref}}$  at the beginning of episode k
- $n_h^k$ : number of visitation at the beginning of episode k
- $\check{n}_h^k$ : number of visitation after the last  $V^{\mathrm{ref}}$  update and before episode k

### **Limitation of Model-Free Algorithms**

- UCB-Advantage-V cannot achieve  $\tilde{O}(\sqrt{SAK})$  regret under TBR & TH
- Is there a model-free algorithm achieving tight regret under TBR & TH?
- Hardness:
  - How to apply updates to all H layers when any  $(s_h, a_h)$  is collected?

### Limitation of Model-Free Algorithms (cont'd)

- On deterministic MDPs, UCB-Advantage-V has regret  $\propto K^{1/4}$ , **not a constant** as MVP-V
- Is there a **generic** model-free algorithm achieving constant regret on deterministic MDPs?
- Hardness:
  - Using all historical data to estimate value function is biased
  - To converge in constant steps, must discard initial data

#### References

- Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. Advances in neural information processing systems, 21, 2008.
- Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of machine learning research, 7(6), 2006.
- Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? Advances in neural information processing systems, 31, 2018.
- Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforce- ment learning. In International Conference on Machine Learning, pages 4870–4879. PMLR, 2020.
- Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning. Advances in Neural Information Processing Systems, 34:17762–17776, 2021.
- Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular mdps. Advances in Neural Information Processing Systems, 32, 2019.
- Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson. First-order regret in reinforcement learning with linear function approximation: A robust estimation approach. In International Conference on Machine Learning, pages 22384–22429. PMLR, 2022.
- Haike Xu, Tengyu Ma, and Simon Du. Fine-grained gap-dependent bounds for tabular mdps via adaptive multi-step bootstrap. In Conference on Learning Theory, pages 4438–4472. PMLR, 2021.
- Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In International Conference on Artificial Intelligence and Statistics, pages 1576–1584. PMLR, 2021.
- Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning without domain knowledge using value function bounds. In ICML, 2019.
- Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via reference- advantage decomposition. Advances in Neural Information Processing Systems, 33:15198–15207, 2020.
- Zihan Zhang, Xiangyang Ji, and Simon Shaolei Du. Is reinforcement learning more difficult than bandits? a near-optimal algorithm escaping the curse of horizon. In COLT, 2021a.

## Thank You