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Reinforcement Learning

Games with random
environments

Robotics Maze

The agent jnteracts w Can we d.esign an a'gorithm Whi(;h litiqni %on the. ..
obseﬁ&gbaéﬁ,qge o automatically exploits determinism? eterministic

. j_jnléj’iimes the uncertainty of “what is the next state and reward” j hi%h .
. |M§ﬂﬁaf:‘£e totally determined €ro variance
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Markov Decision Processes (MDPs)

+0.8

 State space §, with size S
* Action space A, with size A
* Planning horizon H

* Reward function Ry, (s,a) €
A([0,1]) with mean 13,(s, a) for

h e (1]

* Transition model P, (s'|s, a)




Maximum Transition Support

P(s;|s1,a) = 0.4

—E

* ' = maxl||P,(: |s, )l Q/jl P(s3ls1,a) = 0.5
h,s,a
* For deterministic MDPs, ' = 1

P(s1|s1,a) = 0.1

An illustrationfor[' = 3



Policy and Value Function

* Policy m = {7y }pe[n), Where my: 8 - A

e Value functions and Q-functions:

H
Vir(s) :=E, Zrt Sn = 5|,

H
Qr(s,a) :=E, Z rs | (Sh,apn) = (s,a)

* Optimal policy denoted as *, with V7 (s) and Q;, (s, a)



Conditions for MDPs

Totally-bounded reward (TBR)

For any possible trajectory T = {(s, an, i) =13 U {Sy+1}, ek
contextual bandits:

H
z T < 1. bandits have a single
h=1 step reward € [0,1].

Time-homogeneous (TH)

Forany h,h’' < H, P, = P, and Ry, = Ry.
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Previous Results

* Model-based algorithms can be tight under TBR and TH

e Tight: upper bound matches lower bound

* No model-free algorithm is tight under TH

* Model-free: space complexity < O(SAH)
 Constructing P takes O(S?AH) space



Episodic RL for MDPs

* Number of episodes K
e Play a policy ” in episode k
* Regret

K
Regret(K) := Y (Vi*(st) = V" (s})).
* Minimax (worst case) regret, tight bounds '

* Upper bound (main order term, TBR & TH): G(VSAK) [Zanette and Brunskill, 2019,
Zhang et al., 20213]

* Lower bound (TBR & TH): Q(\/SAK) (a contextual bandit as a special MDP)
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Problem-Dependent Regret

* Some MDPs are easier than the others
* Applying an algorithm on them yields regrets better than worst-case

* Example: Deterministic MDPs
* Regret lower bound Q(SA4) (TBR & TH), no dependency on K
* Specially designed algorithms can have regret upper bound 0(S54)

* Maintain a list of unexplored (s, a) pairs

* In each episode, if anything in the list is
reachable, visit it and remove from the list

* After SA episodes the accurate model is
established!



Main Contribution

e Define suitable (problem-dependent) quantities to characterize the
difficulty of each MDP

* Design generic algorithms which

* Preserve minimax optimal regret

* Automatically adapt to structures of MDPs: regrets depend on the above
guantities



Some Problem-Dependent Results

Gap-dependent regret [Even-Dar et al., 2006, Auer et al., 2008,
Simchowitz and Jamieson, 2019, Xu et al., 2021, Yang et al., 2021, ...]

* Proportional to the inverse of sub-optimality gap on optimal Q-functions
* May not recover minimax optimal regret, beyond scope of this work

Optimal value function

First-order regret ‘
» Tabular MDP (TBR): O(+/ HSAK) [lin et al., 2020]
* Linear function approximation: 5(\/ d3H3K) [Wagenmaker et al., 2022]

e Cannot characterize deterministic MDPs!



Variances

Maximum per-step conditional variancel#anette and Brunskill, 2019]

Q* := max{V(Rn(s,a)) + V(Psan,Vi1)}.

h,s,a ‘

+ V(X) = E[(X — EX)?,V(p, %) = Zy(x; = Z;pix;)

Example of large variances: 4+ Example of small variances:
* Ry(s,a) = Unifg sec: * Deterministic MDPs

¢ Pion =(05,05)and Vipy = (0,1) :O0(* Vasa(s) = Viyq(s) foranys, s
* Q™ is not sufficient for our goal, need more definitions!

!
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Variances (cont’'d)

Total multi-step conditional variance

For any trajectory t:

H
Varf = Z (V(Rh(sha ah)) + V(PSh,ah,h7 Vi:+1))'
h=1

With Var,% = Ik<:1 Varfk as the total variance in episodic RL.
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Variances (cont’'d)

Maximum policy-value variance

For any policy m:

H
Varf (s) i= B | ) (V(Ri(sn,a1)) + V(Poy an o V1))
h=1

81—5‘].

Maximum policy-value variance is defined as Var™ := max Var”.
T

Further define Var™ := max Var[ (s).
S
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Comparing Variances

e Var: < HQ*

* They could all be Q(H) (TBR) in the worst case

» VarZ < 0(1) (TBR) with high probability if T is generated by a policy
e Var* < V" < 1 (TBR)

* Better than first-order!

* Deterministic MDPs: Var® = Var* = 0

e Var* = 0 = Varz = 0
* Reverse is not true!



Var® = 0 < Var*

P(s1| *,a;) = 0.5 P(s,| *,a;) = 0.5

e mh(s) = ay
* V7(s)=(H—h+1)/H, same
across the same time step

e Varz = 0
* 15 (s;) = a, and any other action
be a4
* Total reward € {1,1 — 1/H} R(+,a,) =0
e Var* > 0

P(Sll *, az) = 0.5 P(Szl *, az) = 0.5
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Var> = 1/4 > Var* = 0

L1
Variy = V(R(s2,a)) + V(Psyq0, V5) = T

e Var* < maxV{"(s;) <»p
T
* Takep - 0

— e E— S S e e S e o o E——,

———————

Any MDP
with
exactly
zero total
reward

e = = = -



Model-Based Results (TBR & TH)

Totally-bounded reward
Only log dependency on H

v

. Variance- Stochastic- | Deterministic- | Horizon-

Algorlthm Regret Dependent Optimal Optimal Free

Fuler 5(\/H@* . SAK + H5/2S2A) Yes No No No

Zanette and Brunskill [2019] O(VSAK + HY25%4) No Yes No No

MVP ~ )

Zhang et al. [2021a] O(WVSAK + S°A) No Yes No Yes
MVP-V T S

This work O(\/mm{VarK, Var*K}SA +T'SA) Yes Yes Yes Yes
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Model Estimation

n*(s,a,s’)
nk(s,a)
* n*(s, a) : total visitation to (s, a) before episode k
* n¥(s,a,s") : total visitation to (s, a, s") before episode k
Hk(s,a)
nk(s,a)
« 9%(s,a): summation of observed reward on (s,a) before episode k

» Transition: P}, (s") =

e Reward: #**(s,a) =

¢k(s;a) . Ak 2
nk(s,a) (s,a)
« p*(s,a): summation of squared observed reward on (s, a) before episode k

e Variance of reward: VarR*(s, a) =



Optimism

Value estimation
* In episode k, inductively calculate
Qf(s,a) = #*(s,a) + PE VX +
* bf(s,a): bonus function to account for empirical error in 7#*(s, a) and Ps’faV,fﬂ
* Policy < (s) = arg max Q5 (s, a)

* Value V¥(s) = max Q¥ (s, a)
a

Optimism
Q1 (s,a) = Qp(s,a)

e Large bonus ensures optimism, but incurs large regret



Bonus

Bennett’s Inequality to introduce variances

In(2/5)

. %Z””‘: >\/2V[Z]

Exploration bonus with empirical variances (¢t = 0(1))

n

+_bln(2/5)_

n

21¢

IN

V(B o Vs o VarR(s, )
b — 4 ’ 2
r(s,0) \/max{n(s,a),l} " \/;ax{n(s,a),l} *

e Change to MVP: using empirical variances of rewards

max{n(s,a), 1} ;



Analysis

Regret decomposition

k k
* By optimism 2 ( -V (5{()) < Xk ( -V (Sf)) S Yk by (55, an)
s q) V(ﬁs,a,VhH)L \Eﬁ(s,a)i, 21 _
bu(s, ) 4\/max{n(s a),1} * 2\/ma,x{n(s a),1} * max{n(s,a),1}’

Cauchy-Schwarz: X, p, nk(s ah) _\/Zkhnk(skak)\[zkhwh N\/SAZkhwh
N

Regret main order term is O(VSAW ), where

K H
Z Z R(sf,ar) ) + V(Pgr g Vh+1))



Univers

Analysis: Varz

h=1

H
VarZ := Z (V(Rn(sh; an)) + V(Ps,

K H
Z Z Sh7 ah + Xf(-PS;“L ah Vh—|—1))

By V(X +Y) < 2V(X) + 2V(Y),

W <2¥54 X, (W (R(sk,af)) +v(

+ZZI]§:121}_1I:1W(P k k'V;lT+1

Sh.Qp

ity of Washington

Jho V}:+l))

.

Pk k, Vi:+1)

Sh.Ap

~Vie) 4

< G(VW), lower

order term
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Analysis: Var*

H
Var](s) : Z (V(Rw(sn:an)) + V(Psy a0,k V1))

31=S].

K | H .
Z Z Shaah ) + V(Psﬁ,ah Vh—|—1))

From estimation to expectation

. . ] [ L] k
* Each inner sum is an unbiased estimation of Vary' (s’l‘)!

* Naively bounding W using a martingale concentration inequality yields an H-
dependency on lower order terms

Solution: Truncation
* Truncate each inner sum to 5(1) before using martingale concentration inequality

 Effective truncation happens with low probability



Model-Free Results

Space < O(SAH). No
model estimation!

This work

—|—\4/H15S5A3K)

. Variance- Stochastic-
Algorithm Regret Dependent Optimal
Q-learning (UCB-B) | ~ : 9/2 a3/2 A3/2
Jin ot al. [2018 O(WVHASAK + H%?283/243/2) No No
UCB-Advantage ~ 3 4/77T33 08 A6
Zhang et al. [2020] O(VHSAK + VH® 5 ACK) o Yes
(-EarlySettled- N
Advantage O(WH3SAK + H®SA) No Yes
Li et al. [2021]
UCB-Advantage-V 6(\/ min{Var¥,Var* K} HS A Yes Yes

University of Washington
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Value Estimation
By some means
of estimation ’
Naive update rule: Q,(s,a) « P, o 1Vis1 + 7u(s,a) + b5 (s, a)
* The earlier a sample is collected, the more deviation it is from Q7 because V changes

Reference value functions from UCB-Advantage [Zhang et al., 2020]

e —

Qh(sa CL) < I's,a,h }f:l T Ps,a,h(vh+1 — V}f:l) T ?h(sa CL) + bl}i(sa CL),

* Assume Ve is some fixed value and approximates V} well

© Py nViel = P, nVirel, we can use all the data to estimate P; , , (low deviation)

* Deviation in Ps o p (Vp41 — Vet ) is low order



Learn Reference Values

« Let VF®! be snapshots of V}, with a certain frequency
* Only once in UCB-Advantage?

« Vret — ¥ < either H (before snapshot) or 8 (the desired approximation error)

* Less flexibility, making the main order term variance-independent
* Whenever ny (s, a) doubles (uncapped-doubling)?

* Gives arbitrary small V' — V¥ (approximation error)

e Each update invalidates previous V¢!, causing another accumulated bias which is a

variance-independent main order term
e Capped-doubling!

* Balances between approximation error and data waste



Capped-Doubling

) Capped to i* updates!
Design

* Set R = {N; = O(22'H3SA) | i < i*} i
* When ¥, ny,(s,a) = N; € R for some i, assign VF¢(s) « V},(s)
e Ensures VF¢{(s) =V (s) < 5; = H/2!

Motivation

 [* dictates the final precision we want
* Setting i* not too large helps reduce data waste on P ; , (V41 — yrety

* Intermediate updates give a successively halving error sequence
* It makes analysis more flexible than one-time update

University of Washington
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Bonus

— e

Qh(87 a) <« Saa'ah l‘:,’i.—f]_ + Ps,a,h(Vh—l—l T ’;i.—fl) + ?h(87 a) + b;{:l(si’ a)7

Similar as MVP-V, we need variance terms for V' vV — yref gnd R

b 4 /ureft,_l_4 /@4_2 \75F"th+90\{ﬂ;
n n V' n M

. v;,:ef’k: variance of Ve at the beginning of episode k
* V: variance of V — V¢ at the beginning of episode k
. n;‘l: number of visitation at the beginning of episode k

* 7% number of visitation after the last V"' update and before episode k



Limitation of Model-Free Algorithms

 UCB-Advantage-V cannot achieve 5(\/SAK) regret under TBR & TH

* |s there a model-free algorithm achieving tight regret under TBR &
TH?

* Hardness:
* How to apply updates to all H layers when any (s;, ay) is collected?



Limitation of Model-Free Algorithms (cont’'d)

* On deterministic MDPs, UCB-Advantage-V has regret o< K1/4, not a
constant as MVP-V

* |s there a generic model-free algorithm achieving constant regret on
deterministic MDPs?

e Hardness:

e Using all historical data to estimate value function is biased
* To converge in constant steps, must discard initial data
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