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Goal-Oriented RL

Many popular RL problems are tasks:
Minimize the cumulative cost to reach the goal

Also coined as the problem
[Bertsekas, 1995]

has only been studied recently



Regret Minimization in SSP
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SSP-MDP

An SSP-MDRP is a tuple M = (S, A, P, ¢, Sinit, 9 )
State space S U {g}
Goal state g
Initial state (distribution) sinix € S

Action space A
Transition probabilities P(s'|s, a)

Cost function ¢(s,a) € [0, 1]
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SSP-MDP

An SSP-MDP is a tuple M = (S, A, P, ¢, Sinit, 9)
m State space SU {g}
- Goal state g
- Initial state (distribution) sjnix € S

u Action space A SSP-MDPs

m Transition probabilities P(s|s,a)

m Cost function ¢(s,a) € [0, 1]

» Specificity: the agent ends its interaction with the MDP
once (if) it reaches the goal state g

T

absorbing zero-cost
P(glg,a) =1 c(g,a) =0




®m Policyn:S— A

m Time-to-goal:

T"(s):=E
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t=1

m Value function (a.k.a. cost-to-go):
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®m Policyn:S— A

m Time-to-goal:

T™(s) :=E

+oo
> st # g} | =s]
t=1

m Value function (a.k.a. cost-to-go):

VT(s):=E

+oo
> clse, w(se) st # g} | 51 = ]

t=1

Q-function:

Q" (s,a) :=E

+oo
ZC(St, m(s¢))I{s¢ # g} ‘ s1=s,m(s1) = (1]

t=1

/A We may have T™ = 0o, V™ = 00, Q™ = oo for many policies 7



A policy is proper if it reaches g with probability 1 starting from any state in S
Assumption: there exists at least one proper policy
We denote by 7* the optimal proper policy, i.e.,

7 € argmin V"
m: TT<o0



A policy is proper if it reaches g with probability 1 starting from any state in S
Assumption: there exists at least one proper policy

We denote by 7* the optimal proper policy, i.e.,
7 € argmin V"
m: TT<o0
Important quantities:

B, :=max V™ (s) ; T, := max T" (s)
SES seES



Online Learning in SSP

P and ¢ are unknown to the agent

K episodes, an episode ends if
(and only if) the goal is reached

Each episode:
Agent starts at 51 = Sjnjt

While s # g:
Agent selects action a¢ € A
Agent incurs cost ¢; ~ c(st,at)
Environment draws next state

st4+1 ~ P(|st,at)




Online Learning in SSP

P and ¢ are unknown to the agent )
Each episode:

K episodes, an episode ends if Agent starts at 51 = Sinic

(and only if) the goal is reached While s; # g:
Agent selects action a¢ € A
Objective: Minimize the regret: Agent incurs cost ¢; ~ c(st, ar)

Environment draws next state

sg41 ~ P(|s¢, at)

Ry = ZZCQ — KV™ (Sinit)
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If 3k, I* = oo, then we define R = oo



Online Learning in SSP

m P and ¢ are unknown to the agent )
Each episode:

m K episodes, an episode ends if = Agent starts at s1 = Sinit

(and only if) the goal is reached u While s; # g:
® Agent selects action a; € A
m Objective: Minimize the regret: ® Agent incurs cost c; ~ c(st, at)
® Environment draws next state
K I . st41 ~ P([st, ar)
Ry = ZZCI,TL — KV (Sinit)
k=1 h=1

mIf EIk:,Ik = 00, then we define R = oo

& Two differences with finite-horizon regret:
m We evaluate the empirical (not expected) performance of the agent

m We compete against the optimal proper policy 7*
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Three desired properties

for a learning algorithm in online SSP
@ First desired property: Minimax

& Regret lower bound: Q(B,VSAK) [Rosenberg et al., 2020]

An algorithm for online SSP is (nearly) minimax optimal if its regret is bounded by
O(B.VSAK), up to logarithmic factors and lower-order terms.

@ Second desired property: Parameter-free

& SSP-specific quantities: B, and T,

An algorithm for online SSP is parameter-free if
it relies neither on B, nor T, prior knowledge.
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Core challenge in SSP: trade off between minimizing costs and quickly reaching the goal
Harder when the instantaneous costs are small
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Three desired properties

for a learning algorithm in online SSP

® Third desired property: Horizon-free

m Core challenge in SSP: trade off between minimizing costs and quickly reaching the goal
= Harder when the instantaneous costs are small
m i.e., when there is a mismatch between B, and T,

& While B, < T, always holds, the gap may be arbitrarily large

& Lower bound: the regret depends on B,, but a priori not on T}, even as a lower-order term

An algorithm for online SSP is (nearly) horizon-free if its regret depends only
logarithmically on T.
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More on the horizon-free property

& [Wang et al., 2020, Zhang et al., 2020, 2021]

An algorithm for online finite-horizon MDPs with total reward bounded by 1
is (nearly) horizon-free if its regret depends
only logarithmically on the horizon H.

\ number of time steps

by which any policy
terminates
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More on the horizon-free property

& [Wang et al., 2020, Zhang et al., 2020, 2021]
An algorithm for online finite-horizon MDPs with total reward bounded by 1
is (nearly) horizon-free if its regret depends
only logarithmically on the horizon H.
\ number of time steps
by which any policy
The extension to SSP: terminates

An algorithm for online SS5P
is (nearly) horizon-free if its regret depends
only logarithmically on T,.

\ expected number of time steps

by which the optimal policy
terminates

Remarks:
= /A We do not make any extra assumption on the SSP model to uncover horizon-free properties.

m Benefit of bounded total reward assumption: can model sparse spiky reward [Kakade, 2003, Jiang
and Agarwal, 2018]: to the extreme, this scenario is captured by SSP.

13



Our Results & Related Work
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Our Results

New algorithm for online SSP: EB-SSP (Exploration Bonus for SSP)

First algorithm to achieve the minimax regret rate of O(B,V.SAK) while
simultaneously being parameter-free

First algorithm to achieve horizon-free regret in various cases:
positive costs,
general costs with no almost-sure zero-cost cycles,
general costs when an order-accurate estimate of T, is available



Our Results w.r.t. Related Work

Algorithm

Approach

Regret

Minimax

Parameters

Horizon-
Free

Lower Bound

Q(B.VSAK)
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Our Results w.r.t. Related Work

Algorithm Approach Regret Minimax | Parameters Ht::"r'::n_
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finite-horizon

Our Results w.r.t. Related Work
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Additional Related Work

SSP with adversarially changing costs [Rosenberg and Mansour, 2020, Chen et al., 2020,
Chen and Luo, 2021]

Sample complexity of SSP with a generative model [Tarbouriech et al., 2021]
Multi-goal exploration [Lim and Auer, 2012, Tarbouriech et al., 2020b]
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Additional Related Work

SSP with adversarially changing costs [Rosenberg and Mansour, 2020, Chen et al., 2020,
Chen and Luo, 2021]

Sample complexity of SSP with a generative model [Tarbouriech et al., 2021]
Multi-goal exploration [Lim and Auer, 2012, Tarbouriech et al., 2020b]

Later work:
SSP with linear function approximation [Vial et al., 2021]

SSP via posterior sampling [Jafarnia-Jahromi et al., 2021]

Template for regret minimization in SSP [Chen et al., 2021]
Model-based instantiation: matches our regret bound
Model-free instantiation: achieves minimax rate under positive costs
One-step planning (i.e., sparse computational updates)
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EB-SSP Algorithm

Exploration Bonus for SSP

Key ingredients:

m Model-based, value optimistic on the non-truncated SSP

m Carefully skews the empirical transitions 4+ perturbs the empirical costs with an
exploration bonus

m Induces an optimistic SSP problem whose associated value iteration scheme is
guaranteed to converge

m Does not need to known T, and uses an adaptive proxy B for unknown B,
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EB-SSP Algorithm

Initialize Q(s,a) = 0 for all (s,a)
Sequentially select action a; € arg min Q(s¢, a)
acA
If trigger condition:
Compute new Q(s,a) values for all (s, a)
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[Jaksch et al., 2010, Zhang et al., 2020]
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EB-SSP Algorithm

Initialize Q(s,a) = 0 for all (s,a)

Sequentially select action a; € arg min Q(s¢, a)
acA

If trigger condition:

» Standard “doubling condition”: when the visit to a state-action pair doubles
[Jaksch et al., 2010, Zhang et al., 2020]

» New procedure called VISGO — Value Iteration with Slight Goal Optimism



VISGO planning procedure

21

Input: ¢,, > 0 precision level
Start with optimistic values V(©) =
While [V — v > e,
Iteratively compute Vvt = £y for an operator L

Output: the values y i+ (and Q-values Q(Hl))




VISGO planning procedure
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Input: ¢,, > 0 precision level
Start with optimistic values V(©) =
While [V — v > e,

Iteratively compute Vvt = £y for an operator L

M How to define £?

Output: the values y i+ (and Q-values Q(Hl))




How to define £ in VISGO?

® Empirical transitions P , -, empirical costs (s, a), visit counters n(s,a)

@ Slightly goal-skewed empirical transitions P:

~ n(s,a) =

Py g5 = 7P57a73' +

o n(s,a)+1

slight goal
skewing




How to define £ in VISGO?

® Empirical transitions P , -, empirical costs (s, a), visit counters n(s,a)

@ Slightly goal-skewed empirical transitions P:

slight goal
skewing

= n(s,a) 5 I[s" = g]
P g/ = 7P s’
0 n(s,a) +1 > + n(s,a) + 1
Transition model P P P

Number of

. At least one | Possibly none
proper policies

All




How to define £ in VISGO?

® Bonus function b:

V(ﬁ&aa V)Ls,a Bis,a } c /C\(S,Q)L&a + By\/Stsa
3

b(V,s,a) :=max {cl sa) ch*(s,a)

given proxy B > 0, specific constants ¢y, ¢z, ¢3,c4 > 0 and logarithmic term ¢ 4

nt(s,a) “ nt(s,a)’

23
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How to define £ in VISGO?

® Bonus function b:

V(]Bs' aaV)Lsa Blgq /C\(Sya)Lsa B\/ Sbsa
b V) ) = { ’ : ) . } ! : )
(Vi 0) i=max 1 nt(s,a) 2 nt(s,a) s nt(s,a) o nt(s,a)

given proxy B > 0, specific constants ¢y, ¢z, ¢3,c4 > 0 and logarithmic term ¢ 4

@ Operator L
LV (s) := max { miﬂ {e(s,a) + P,y V= b(V,s,a) 12 0}
ac t i

2 sources of
optimism




Online SSP

3 Desirable Properties

Our Results & Related Work

EB-SSP Algorithm

Analysis Overview

Parameter-Free EB-SSP



Theorem (Intermediate regret bound)

Assume that
B 2 B* Z 11
the value function of any improper policy has at least one unbounded component
» the optimal policy is proper and satisfies the Bellman optimality equations [Bertsekas and

Tsitsiklis, 1991]

Then w.p.1— 6,

Ry = O(B*\/SA—Klog (%) + BS2Alog? (%))

with Ty the accumulated time over the K episodes.



Proof part 1: VISGO properties

Lemma
As long as B > B,.:
(1) Optimism: Q' (s,a) < Q™ (s, a), for any iteration i > 0

(2) Finite-time near-convergence: VISGO terminates within a finite (polynomially
bounded) number of iteration steps

26



Proof part 1: VISGO properties

Lemma

As long as B > B,.:

(1) Optimism: Q' (s,a) < Q™ (s, a), for any iteration i > 0
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Proof idea.

(1) We derive a monotonicity property for L
Achieved by carefully tuning the constants c1, co, c3, ¢4 in the bonus
& Similar argument to analysis of MVP [Zhang et al., 2020]
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Proof part 1: VISGO properties

Lemma

As long as B > B,.:

(1) Optimism: Q' (s,a) < Q™ (s, a), for any iteration i > 0

(2) Finite-time near-convergence: VISGO terminates within a finite (polynomially
bounded) number of iteration steps

Proof idea.

(1) We derive a monotonicity property for L
Achieved by carefully tuning the constants c1, co, c3, ¢4 in the bonus
& Similar argument to analysis of MVP [Zhang et al., 2020]

(2) We derive a contraction property for £ _
Contraction modulus p < 1 — % < 1, where v := min g = U
s,a

& SSP-specific requirement

26



Proof part 2: Regret Decomposition

© First, a bit of notation:

Recall that for now we consider B > B, > 1
The two VISGO properties (optimism and convergence) hold

Let V; be the VISGO value at time ¢
Define the normalized value V; := V;/B, € [0,1]

Let Cy (resp. Tx) be the cumulative cost (resp. time) over the K episodes

© Up next, high-level idea in 1 slide:

27



Tyr

* LS . bounding the

Rk = —KV7" (sinit) S E b:(s¢,at) + additional terms Bellman error
=1 (Vi approximates
fixed point of L)
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Pstwat7 Vt)
nt(st, CLt)
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-
Il

bounding the
Bellman error
(Vi approximates

fixed point of L)

bonus expression,
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Rk =
t=1
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t=1
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bounding the

Bellman error
(Vi approximates
fixed point of L)

bonus expression,
P /P /P relation

pigeonhole principle,
value normalization



bounding the

T
Bellman error

*
Rk = — KV7" (sinit) S Z bi(st, at) + additional terms
— (Ve approximates
fixed point of L)
Tk e Tk Tk V)
S Z 6t at’ < Z ét a“ < Z St atr 7t bonus expression,
— Nt St, CLt Tt St, CLt nt Sty at) }S/ﬁ/P relation

pigeonhole principle,
value normalization

Tk
SVSAD V(Poa, Vi) S BAVSA
t=1

law of total
variance...

Tx
S B*\/Sj <ZV(PSt,ata (Vt)Q) + (B
t=1 *



bounding the

T
Bellman error

*
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=1 (Ve approximatfs
fixed point of L)
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law of total
variance...

Tk
VSa <Z V(Proars (V0)%) + (
t=1
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< < vV, )? ...recursively...
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d = log Tk
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Theorem (Intermediate regret bound)

Assume that

B>B,>1,

the value function of any improper policy has at least one unbounded component.
Then w.p.1 -6,

Ric = O(B,VFAK log (%) B Alog? (B*S;ljvv))_

Relies on condition B and depends on Ty:

» Circumvented with cost perturbation: ¢, (s,a) < max{c(s,a),n}

Cx
» If costs are lower bounded by 1 > 0, then condition F1 holds and 7, < —-

n
» Regret < “Regret in cost-perturbed MDP" + 0T, K

» There remains to tune the cost perturbation:

1
n poly(K)
—leolly(K) if loose prior knowledge X =~ T, is available



Theorem (Intermediate regret bound)

Assume that

B>B,>1,

the value function of any improper policy has at least one unbounded component.
Then w.p.1 -6,

Ric = O(B,VFAK log (%) B Alog? (B*S;l]vv))_

Relies on condition B and depends on Ty:

» Circumvented with cost perturbation: ¢, (s,a) < max{c(s,a),n}

Cx
» If costs are lower bounded by 1 > 0, then condition F1 holds and 7, < —-

n
» Regret < “Regret in cost-perturbed MDP" + 0T, K

» There remains to tune the cost perturbation:
_ 1

n poly(lK) _ _ . .

Xpoly(K) if loose prior knowledge X ~ T, is available

Relies on B being properly tuned: w Parameter-free scheme to adaptively tune B3



Online SSP

3 Desirable Properties

Our Results & Related Work

EB-SSP Algorithm

Analysis Overview

[@ Parameter-Free EB-SSP



Unknown B,

» Unknown range of the optimal value function

Exploration bonus requires a bound on B, := |V |s

Setting! Finite-horizon Finite-horizon Discounted SSP

w/ bounded total reward

Bound on [|[V™ ||o H 1 1/(1—+) ?

If B < B, optimism and convergence of VISGO may not hold

It may be impossible to estimate B, online (some states may be unreachable)

Yn average reward: open question of [Qian et al., 2019]: Is it possible to design an exploration bonus
strategy without prior knowledge of the “optimal range’?



Parameter-Free EB-SSP
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t=1 *
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R1: First regime
» Underestimate B < B,
» How to bound regret?
Regret(R1) < Costs(R1) < 7

R2: Second regime
» Overestimate B > B,
» How to bound regret?
Regret(R2) < B.VSAK + BS*A
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m Inter-episode increment of B:

m Intra-episode increments of B:
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R1: First regime
» Underestimate B < B,
» How to bound regret?
Regret(R1) < Costs(R1) < 7

m Inter-episode increment of B:

R2: Second regime
» Overestimate B > B,
» How to bound regret?
Regret(R2) < B,V SAK + BS?A

Whenever a new episode k begins, set 3 « max{B, Vk/(5%?A'/?)}
» For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

m Intra-episode increments of B:
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(unknown)
t=1 T*
; f ) t
B« 1 R1: First regime R2: Second regime
» Underestimate B < B, » Overestimate B > B,
» How to bound regret? » How to bound regret?
Regret(R1) < Costs(R1) < 7 Regret(R2) < B,V SAK + BS?A

m Inter-episode increment of B:
Whenever a new episode k begins, set 3 « max{B, Vk/(5%?A'/?)}
» For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

m Intra-episode increments of B:

i) Track range of each VISGO iterate: if |[V| ., > B, then double B « 2B
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Parameter-Free EB-SSP

(unknown)
t=1 T*
; f ) t
B« 1 R1: First regime R2: Second regime
» Underestimate B < B, » Overestimate B > B,
» How to bound regret? » How to bound regret?
Regret(R1) < Costs(R1) < 7 Regret(R2) < B,V SAK + BS?A

m Inter-episode increment of B:
Whenever a new episode k begins, set 3 « max{B, Vk/(5%?A'/?)}
» For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

m Intra-episode increments of B:
i) Track range of each VISGO iterate: if |||, > I, then double B + 2B
it) Track cumulative cost C: if C' > ¢, then double 1B + 2B

» Cost threshold ¢ ~ kB + BV SAk + BS*A
» Violated at most @ = O(log B ) times in R1
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Parameter-Free EB-SSP

(unknown)
t=1 ™
; f ) t
B« 1 R1: First regime R2: Second regime
» Underestimate B < B, » Overestimate B > B,
» How to bound regret? » How to bound regret?
Regret(R1) < Costs(R1) S - ¢ Regret(R2) < B.VSAK + BS*A

m Inter-episode increment of B:
Whenever a new episode k begins, set 3 « max{B, Vk/(5%?A'/?)}
» For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

m Intra-episode increments of B:
i) Track range of each VISGO iterate: if |||, > I, then double B + 2B
it) Track cumulative cost C: if C' > ¢, then double 1B + 2B

» Cost threshold ¢ ~ kB + BV SAk + BS*A
» Violated at most @ = O(log B ) times in R1
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Regret of Parameter-Free EB-SSP

The regret of parameter-free EB-SSP can be bounded w.p.1 — § by

Rk =0 (R} log (—B 2 ;TK> + B3$3Alog? <—B*S fTK» ,

where R’; bounds the regret of EB-SSP in the case of known B,.



Regret of Parameter-Free EB-SSP

The regret of parameter-free EB-SSP can be bounded w.p.1 — § by
Rk =0 <R§( log (%) + B35 Alog? (%ﬂ()) ,

where R’; bounds the regret of EB-SSP in the case of known B,.

» We can circumvent the knowledge of B, up to logarithmic and lower-order terms.

» Only algorithmic change to EB-SSP:
m dual tracking of the cumulative costs and VISGO iterates,

m careful increment of the proxy B in the bonus.
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Conclusion and Outlook

Summary
EB-SSP is the first algorithm in online SSP to

achieve the minimax regret rate of 6(3*\/ SAK) while simultaneously being
parameter-free

achieve horizon-free regret in various cases (e.g., positive costs, or general costs with
an order-accurate estimate of T available)

Future directions
Open question: simultaneously minimax, parameter-free and horizon-free?
Tight sample complexity bounds for SSP
SSP beyond tabular & model-based & |Vial et al., 2021, Chen et al., 2021]

Beyond the theory?

On the question of when to reset in goal-oriented deep RL



Details are in our paper:
Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret
https://arxiv.org/abs/2104.11186

Jean Tarbouriech*, Runlong Zhou*, Simon S. Du, Matteo Pirotta, Michal Valko, Alessandro Lazaric

Thank you
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Extra slides



SSP Model with Positive Costs

Costs are lower bounded by an unknown constant ¢, > 0.

Corollary

Running EB-SSP with B = B, > 1 and n =0 gives w.p.1 — ¢

Ry =0 (B*\/SAKlog (KB*SA) + B,S%Alog? (KB*SA)) .

Cmin0 Garfra®

» (Nearly) minimax and horizon-free



SSP Model with General Costs

O T, Unknown

Corollary
Running EB-SSP with B = B, > 1 and n = K~" for any constant n > 1 gives w.p.1 — §

Rk = O(nB*x/SAK L+ K::*_l + "?n”féL = nQB*SQAL2>, L:=1og KT,SA6~".

» (Nearly) minimax and “horizon-vanishing”

O Order-Accurate Estimate of 7., Available

Assumption
Prior knowledge: a quantity X s.t.T,/v < X < )\Tf for some unknown constants v, A, > 1.

Corollary
Running EB-SSP with B = B, > 1 and n = (XK) ™! gives w.p.1 — ¢

KT,SA KT,SA
Rk =0 (B*\/SAKlog( 55 ) + B, 5% Alog? ( 55 >> )

» (Nearly) minimax and horizon-free
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Case B, > 0

Theorem (Intermediate regret bound)

Assume that
B 2 B*r

the value function of any improper policy has at least one unbounded component

Then w.p.1 — 6,

max{By, 1}SAT}
)
with T the accumulated time over the K episodes.

max{By, 1}SAT} ) )

Rk = O(+/(B2 + B,)SAK log
)

) + BS?Alog? (
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