
Stochastic Shortest Path:
Minimax, Parameter-Free and Towards Horizon-Free Regret

Jean Tarbouriech (FAIR & Inria Scool)

June 29, 2021

RL Theory Virtual Seminar

Collaborators
2

Runlong Zhou
Tsinghua University

Simon S. Du
Univ.Washington

Matteo Pirotta
FAIR

Michal Valko
DeepMind

Alessandro Lazaric
FAIR

Goal-Oriented RL
3

Many popular RL problems are goal-oriented tasks:
Minimize the cumulative cost to reach the goal

Also coined as the stochastic shortest path problem
[Bertsekas, 1995]

Online learning in SSP has only been studied recently

Regret Minimization in SSP
4

*we consider SSP with loops (i.e., episodes last as long as the goal is reached)

Tarbouriech
Garcelon

Valko
Pirotta

Lazaric 20

Dec

2020

Rosenberg
Cohen

M
ansour Kaplan

20

Feb
Ro
se
nb
er
g
&
M
an
so
ur
20
(a
dv
er
sa
ria
l)

Jun

Ch
en
Lu
o
W
ei
20
(a
dv
er
sa
ria
l)

Ä

Dec

2021

Ch
en
&
Lu
o
21
(a
dv
er
sa
ria
l)

Feb
Cohen

Efroni M
ansour Rosenberg

21

Ä

Mar

Tarbouriech
Zhou

Du
Pirotta

Valko
Lazaric 21

Á

Apr

Vial Parulekar Shakkottai Srikant 21

May

Jafarnia-Jahrom
i Chen

Jain
Luo

21

Jun

Chen
Jafarnia-Jahrom

i Jain
Luo

21

Jun

Regret Minimization in SSP
4

*we consider SSP with loops (i.e., episodes last as long as the goal is reached)

Tarbouriech
Garcelon

Valko
Pirotta

Lazaric 20

Dec

2020

Rosenberg
Cohen

M
ansour Kaplan

20

Feb
Ro
se
nb
er
g
&
M
an
so
ur
20
(a
dv
er
sa
ria
l)

Jun

Ch
en
Lu
o
W
ei
20
(a
dv
er
sa
ria
l)

Ä

Dec

2021

Ch
en
&
Lu
o
21
(a
dv
er
sa
ria
l)

Feb
Cohen

Efroni M
ansour Rosenberg

21

Ä

Mar

Tarbouriech
Zhou

Du
Pirotta

Valko
Lazaric 21

Á

Apr

Vial Parulekar Shakkottai Srikant 21

May

Jafarnia-Jahrom
i Chen

Jain
Luo

21

Jun

Chen
Jafarnia-Jahrom

i Jain
Luo

21

Jun

1 Online SSP

2 3 Desirable Properties

3 Our Results & Related Work

4 EB-SSP Algorithm

5 Analysis Overview

6 Parameter-Free EB-SSP

SSP-MDP
6

An SSP-MDP is a tuple M = 〈 S, A, P, c, sinit, g 〉
State space S ∪ {g}
- Goal state g

- Initial state (distribution) sinit ∈ S

Action space A

Transition probabilities P (s′|s, a)

Cost function c(s, a) ∈ [0, 1]

I Specificity: the agent ends its interaction with the MDP
once (if) it reaches the goal state g

absorbing
P (g|g, a) = 1

zero-cost
c(g, a) = 0

SSP-MDP
6

An SSP-MDP is a tuple M = 〈 S, A, P, c, sinit, g 〉
State space S ∪ {g}
- Goal state g

- Initial state (distribution) sinit ∈ S

Action space A

Transition probabilities P (s′|s, a)

Cost function c(s, a) ∈ [0, 1]

I Specificity: the agent ends its interaction with the MDP
once (if) it reaches the goal state g

absorbing
P (g|g, a) = 1

zero-cost
c(g, a) = 0

SSP-MDP
6

An SSP-MDP is a tuple M = 〈 S, A, P, c, sinit, g 〉
State space S ∪ {g}
- Goal state g

- Initial state (distribution) sinit ∈ S

Action space A

Transition probabilities P (s′|s, a)

Cost function c(s, a) ∈ [0, 1]

I Specificity: the agent ends its interaction with the MDP
once (if) it reaches the goal state g

absorbing
P (g|g, a) = 1

zero-cost
c(g, a) = 0

SSP-MDP
6

An SSP-MDP is a tuple M = 〈 S, A, P, c, sinit, g 〉
State space S ∪ {g}
- Goal state g

- Initial state (distribution) sinit ∈ S

Action space A

Transition probabilities P (s′|s, a)

Cost function c(s, a) ∈ [0, 1]

I Specificity: the agent ends its interaction with the MDP
once (if) it reaches the goal state g

absorbing
P (g|g, a) = 1

zero-cost
c(g, a) = 0

Policy π : S → A
Time-to-goal :

T π(s) := E

[
+∞∑
t=1

I{st 6= g}
∣∣∣ s1 = s

]

Value function (a.k.a. cost-to-go):

V π(s) := E

[
+∞∑
t=1

c(st, π(st))I{st 6= g}
∣∣∣ s1 = s

]

Q-function:

Qπ(s, a) := E

[
+∞∑
t=1

c(st, π(st))I{st 6= g}
∣∣∣ s1 = s, π(s1) = a

]

" We may have Tπ =∞, V π =∞, Qπ =∞ for many policies π

Policy π : S → A
Time-to-goal :

T π(s) := E

[
+∞∑
t=1

I{st 6= g}
∣∣∣ s1 = s

]

Value function (a.k.a. cost-to-go):

V π(s) := E

[
+∞∑
t=1

c(st, π(st))I{st 6= g}
∣∣∣ s1 = s

]

Q-function:

Qπ(s, a) := E

[
+∞∑
t=1

c(st, π(st))I{st 6= g}
∣∣∣ s1 = s, π(s1) = a

]

" We may have Tπ =∞, V π =∞, Qπ =∞ for many policies π

A policy is proper if it reaches g with probability 1 starting from any state in S

Assumption: there exists at least one proper policy

We denote by π? the optimal proper policy , i.e.,

π? ∈ arg min
π: Tπ<∞

V π

Important quantities:

B? := max
s∈S

V π?(s) ; T? := max
s∈S

T π
?
(s)

A policy is proper if it reaches g with probability 1 starting from any state in S

Assumption: there exists at least one proper policy

We denote by π? the optimal proper policy , i.e.,

π? ∈ arg min
π: Tπ<∞

V π

Important quantities:

B? := max
s∈S

V π?(s) ; T? := max
s∈S

T π
?
(s)

Online Learning in SSP
9

P and c are unknown to the agent

K episodes, an episode ends if
(and only if) the goal is reached

Objective: Minimize the regret:

RK :=

K∑
k=1

Ik∑
h=1

ckh − K V π?(sinit)

If ∃k, Ik =∞, then we define RK =∞

Each episode:

Agent starts at s1 = sinit

While st 6= g:

• Agent selects action at ∈ A
• Agent incurs cost ct ∼ c(st, at)
• Environment draws next state
st+1 ∼ P (·|st, at)

� Two differences with finite-horizon regret:

We evaluate the empirical (not expected) performance of the agent

We compete against the optimal proper policy π?

Online Learning in SSP
9

P and c are unknown to the agent

K episodes, an episode ends if
(and only if) the goal is reached

Objective: Minimize the regret:

RK :=

K∑
k=1

Ik∑
h=1

ckh − K V π?(sinit)

If ∃k, Ik =∞, then we define RK =∞

Each episode:

Agent starts at s1 = sinit

While st 6= g:

• Agent selects action at ∈ A
• Agent incurs cost ct ∼ c(st, at)
• Environment draws next state
st+1 ∼ P (·|st, at)

� Two differences with finite-horizon regret:

We evaluate the empirical (not expected) performance of the agent

We compete against the optimal proper policy π?

Online Learning in SSP
9

P and c are unknown to the agent

K episodes, an episode ends if
(and only if) the goal is reached

Objective: Minimize the regret:

RK :=

K∑
k=1

Ik∑
h=1

ckh − K V π?(sinit)

If ∃k, Ik =∞, then we define RK =∞

Each episode:

Agent starts at s1 = sinit

While st 6= g:

• Agent selects action at ∈ A
• Agent incurs cost ct ∼ c(st, at)
• Environment draws next state
st+1 ∼ P (·|st, at)

� Two differences with finite-horizon regret:

We evaluate the empirical (not expected) performance of the agent

We compete against the optimal proper policy π?

1 Online SSP

2 3 Desirable Properties

3 Our Results & Related Work

4 EB-SSP Algorithm

5 Analysis Overview

6 Parameter-Free EB-SSP

Three desired properties
for a learning algorithm in online SSP

11

¬ First desired property: Minimax

� Regret lower bound: Ω(B?
√
SAK) [Rosenberg et al., 2020]

An algorithm for online SSP is (nearly) minimax optimal if its regret is bounded by
Õ(B?

√
SAK), up to logarithmic factors and lower-order terms.

­ Second desired property: Parameter-free

� SSP-specific quantities: B? and T?

An algorithm for online SSP is parameter-free if
it relies neither on B? nor T? prior knowledge.

Three desired properties
for a learning algorithm in online SSP

11

¬ First desired property: Minimax

� Regret lower bound: Ω(B?
√
SAK) [Rosenberg et al., 2020]

An algorithm for online SSP is (nearly) minimax optimal if its regret is bounded by
Õ(B?

√
SAK), up to logarithmic factors and lower-order terms.

­ Second desired property: Parameter-free

� SSP-specific quantities: B? and T?

An algorithm for online SSP is parameter-free if
it relies neither on B? nor T? prior knowledge.

Three desired properties
for a learning algorithm in online SSP

11

¬ First desired property: Minimax

� Regret lower bound: Ω(B?
√
SAK) [Rosenberg et al., 2020]

An algorithm for online SSP is (nearly) minimax optimal if its regret is bounded by
Õ(B?

√
SAK), up to logarithmic factors and lower-order terms.

­ Second desired property: Parameter-free

� SSP-specific quantities: B? and T?

An algorithm for online SSP is parameter-free if
it relies neither on B? nor T? prior knowledge.

Three desired properties
for a learning algorithm in online SSP

12

® Third desired property: Horizon-free

Core challenge in SSP: trade off between minimizing costs and quickly reaching the goal

Harder when the instantaneous costs are small

i.e., when there is a mismatch between B? and T?

� While B? ≤ T? always holds, the gap may be arbitrarily large

� Lower bound: the regret depends on B?, but a priori not on T?, even as a lower-order term

An algorithm for online SSP is (nearly) horizon-free if its regret depends only
logarithmically on T?.

Three desired properties
for a learning algorithm in online SSP

12

® Third desired property: Horizon-free

Core challenge in SSP: trade off between minimizing costs and quickly reaching the goal

Harder when the instantaneous costs are small

i.e., when there is a mismatch between B? and T?

� While B? ≤ T? always holds, the gap may be arbitrarily large

� Lower bound: the regret depends on B?, but a priori not on T?, even as a lower-order term

An algorithm for online SSP is (nearly) horizon-free if its regret depends only
logarithmically on T?.

Three desired properties
for a learning algorithm in online SSP

12

® Third desired property: Horizon-free

Core challenge in SSP: trade off between minimizing costs and quickly reaching the goal

Harder when the instantaneous costs are small

i.e., when there is a mismatch between B? and T?

� While B? ≤ T? always holds, the gap may be arbitrarily large

� Lower bound: the regret depends on B?, but a priori not on T?, even as a lower-order term

An algorithm for online SSP is (nearly) horizon-free if its regret depends only
logarithmically on T?.

More on the horizon-free property
13

� [Wang et al., 2020, Zhang et al., 2020, 2021]

An algorithm for online finite-horizon MDPs with total reward bounded by 1
is (nearly) horizon-free if its regret depends
only logarithmically on the horizon H.

number of time steps
by which any policy
terminates

The extension to SSP:

An algorithm for online SSP
is (nearly) horizon-free if its regret depends

only logarithmically on T?.

expected number of time steps
by which the optimal policy
terminates

Remarks:

" We do not make any extra assumption on the SSP model to uncover horizon-free properties.

Benefit of bounded total reward assumption: can model sparse spiky reward [Kakade, 2003, Jiang
and Agarwal, 2018]: to the extreme, this scenario is captured by SSP.

More on the horizon-free property
13

� [Wang et al., 2020, Zhang et al., 2020, 2021]

An algorithm for online finite-horizon MDPs with total reward bounded by 1
is (nearly) horizon-free if its regret depends
only logarithmically on the horizon H.

number of time steps
by which any policy
terminatesThe extension to SSP:

An algorithm for online SSP
is (nearly) horizon-free if its regret depends

only logarithmically on T?.

expected number of time steps
by which the optimal policy
terminates

Remarks:

" We do not make any extra assumption on the SSP model to uncover horizon-free properties.

Benefit of bounded total reward assumption: can model sparse spiky reward [Kakade, 2003, Jiang
and Agarwal, 2018]: to the extreme, this scenario is captured by SSP.

More on the horizon-free property
13

� [Wang et al., 2020, Zhang et al., 2020, 2021]

An algorithm for online finite-horizon MDPs with total reward bounded by 1
is (nearly) horizon-free if its regret depends
only logarithmically on the horizon H.

number of time steps
by which any policy
terminatesThe extension to SSP:

An algorithm for online SSP
is (nearly) horizon-free if its regret depends

only logarithmically on T?.

expected number of time steps
by which the optimal policy
terminates

Remarks:

" We do not make any extra assumption on the SSP model to uncover horizon-free properties.

Benefit of bounded total reward assumption: can model sparse spiky reward [Kakade, 2003, Jiang
and Agarwal, 2018]: to the extreme, this scenario is captured by SSP.

1 Online SSP

2 3 Desirable Properties

3 Our Results & Related Work

4 EB-SSP Algorithm

5 Analysis Overview

6 Parameter-Free EB-SSP

Our Results
15

1 New algorithm for online SSP: EB-SSP (Exploration Bonus for SSP)

2 First algorithm to achieve the minimax regret rate of Õ(B?
√
SAK) while

simultaneously being parameter-free

3 First algorithm to achieve horizon-free regret in various cases:
• positive costs,
• general costs with no almost-sure zero-cost cycles,
• general costs when an order-accurate estimate of T? is available

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Our Results w.r.t. Related Work
16

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
? S
√
AK + T?B?S

2A
)

No None No

Õ
(
B?S
√
AK + T

3/2
? S2A

)
No B? No

[Cohen et al., 2021]
Value optim. on
finite-horizon
reduction

Õ
(
B?
√
SAK + T 4

?S
2A
)

Yes B?, T? No

Õ
(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

Õ

(
B?
√
SAK +B?S

2A+
T?

poly(K)

)
Yes B? No∗

This work Value optim. on
non-truncated SSP

Õ
(
B?
√
SAK +B3

?S
3A
)

Yes T? Yes

Õ

(
B?
√
SAK +B3

?S
3A+

T?
poly(K)

)
Yes None No∗

Lower Bound Ω(B?
√
SAK) - - -

Additional Related Work
17

SSP with adversarially changing costs [Rosenberg and Mansour, 2020, Chen et al., 2020,
Chen and Luo, 2021]

Sample complexity of SSP with a generative model [Tarbouriech et al., 2021]

Multi-goal exploration [Lim and Auer, 2012, Tarbouriech et al., 2020b]

Later work:
SSP with linear function approximation [Vial et al., 2021]

SSP via posterior sampling [Jafarnia-Jahromi et al., 2021]

Template for regret minimization in SSP [Chen et al., 2021]
• Model-based instantiation: matches our regret bound
• Model-free instantiation: achieves minimax rate under positive costs
• One-step planning (i.e., sparse computational updates)

Additional Related Work
17

SSP with adversarially changing costs [Rosenberg and Mansour, 2020, Chen et al., 2020,
Chen and Luo, 2021]

Sample complexity of SSP with a generative model [Tarbouriech et al., 2021]

Multi-goal exploration [Lim and Auer, 2012, Tarbouriech et al., 2020b]

Later work:
SSP with linear function approximation [Vial et al., 2021]

SSP via posterior sampling [Jafarnia-Jahromi et al., 2021]

Template for regret minimization in SSP [Chen et al., 2021]
• Model-based instantiation: matches our regret bound
• Model-free instantiation: achieves minimax rate under positive costs
• One-step planning (i.e., sparse computational updates)

1 Online SSP

2 3 Desirable Properties

3 Our Results & Related Work

4 EB-SSP Algorithm

5 Analysis Overview

6 Parameter-Free EB-SSP

EB-SSP Algorithm
Exploration Bonus for SSP

19

Key ingredients:

Model-based, value optimistic on the non-truncated SSP

Carefully skews the empirical transitions + perturbs the empirical costs with an
exploration bonus

Induces an optimistic SSP problem whose associated value iteration scheme is
guaranteed to converge

Does not need to known T?, and uses an adaptive proxy B for unknown B?

EB-SSP Algorithm
20

Initialize Q(s, a) = 0 for all (s, a)

Sequentially select action at ∈ arg min
a∈A

Q(st, a)

If trigger condition:
• Compute new Q(s, a) values for all (s, a)

I Standard “doubling condition”: when the visit to a state-action pair doubles
[Jaksch et al., 2010, Zhang et al., 2020]

I New procedure called VISGO — Value Iteration with Slight Goal Optimism

EB-SSP Algorithm
20

Initialize Q(s, a) = 0 for all (s, a)

Sequentially select action at ∈ arg min
a∈A

Q(st, a)

If trigger condition:
• Compute new Q(s, a) values for all (s, a)

I Standard “doubling condition”: when the visit to a state-action pair doubles
[Jaksch et al., 2010, Zhang et al., 2020]

I New procedure called VISGO — Value Iteration with Slight Goal Optimism

EB-SSP Algorithm
20

Initialize Q(s, a) = 0 for all (s, a)

Sequentially select action at ∈ arg min
a∈A

Q(st, a)

If trigger condition:
• Compute new Q(s, a) values for all (s, a)

I Standard “doubling condition”: when the visit to a state-action pair doubles
[Jaksch et al., 2010, Zhang et al., 2020]

I New procedure called VISGO — Value Iteration with Slight Goal Optimism

VISGO planning procedure
21

Input: εVI > 0 precision level
Start with optimistic values V (0) = 0

While ‖V (i+1) − V (i)‖∞ > εVI :

• Iteratively compute V (i+1) = L̃V (i) for an operator L̃

How to define L̃?

Output: the values V (i+1) (and Q-values Q(i+1))

VISGO planning procedure
21

Input: εVI > 0 precision level
Start with optimistic values V (0) = 0

While ‖V (i+1) − V (i)‖∞ > εVI :

• Iteratively compute V (i+1) = L̃V (i) for an operator L̃

How to define L̃?Output: the values V (i+1) (and Q-values Q(i+1))

How to define L̃ in VISGO?
22

¬ Empirical transitions P̂s,a,s′ , empirical costs ĉ(s, a), visit counters n(s, a)

­ Slightly goal-skewed empirical transitions P̃ :

P̃s,a,s′ :=
n(s, a)

n(s, a) + 1
P̂s,a,s′ +

I[s′ = g]

n(s, a) + 1

slight goal
skewing

Transition model P P̂ P̃

Number of
proper policies At least one Possibly none All

How to define L̃ in VISGO?
22

¬ Empirical transitions P̂s,a,s′ , empirical costs ĉ(s, a), visit counters n(s, a)

­ Slightly goal-skewed empirical transitions P̃ :

P̃s,a,s′ :=
n(s, a)

n(s, a) + 1
P̂s,a,s′ +

I[s′ = g]

n(s, a) + 1

slight goal
skewing

Transition model P P̂ P̃

Number of
proper policies At least one Possibly none All

How to define L̃ in VISGO?
23

® Bonus function b:

b(V, s, a) := max
{
c1

√
V(P̃s,a, V)ιs,a
n+(s, a)

, c2
Bιs,a
n+(s, a)

}
+ c3

√
ĉ(s, a)ιs,a
n+(s, a)

+ c4
B
√
Sιs,a

n+(s, a)
,

given proxy B > 0, specific constants c1, c2, c3, c4 > 0 and logarithmic term ιs,a

¯ Operator L̃:
L̃V (s) := max

{
min
a∈A

{
ĉ(s, a) + P̃s,a V − b(V, s, a)

}
, 0
}

2 sources of
optimism

How to define L̃ in VISGO?
23

® Bonus function b:

b(V, s, a) := max
{
c1

√
V(P̃s,a, V)ιs,a
n+(s, a)

, c2
Bιs,a
n+(s, a)

}
+ c3

√
ĉ(s, a)ιs,a
n+(s, a)

+ c4
B
√
Sιs,a

n+(s, a)
,

given proxy B > 0, specific constants c1, c2, c3, c4 > 0 and logarithmic term ιs,a

¯ Operator L̃:
L̃V (s) := max

{
min
a∈A

{
ĉ(s, a) + P̃s,a V − b(V, s, a)

}
, 0
}

2 sources of
optimism

1 Online SSP

2 3 Desirable Properties

3 Our Results & Related Work

4 EB-SSP Algorithm

5 Analysis Overview

6 Parameter-Free EB-SSP

Theorem (Intermediate regret bound)

Assume that
1 B ≥ B? ≥ 1,

2 the value function of any improper policy has at least one unbounded component
I the optimal policy is proper and satisfies the Bellman optimality equations [Bertsekas and

Tsitsiklis, 1991]

Then w.p. 1− δ,

RK = O
(
B?
√
SAK log

(B?SATK
δ

)
+BS2A log2

(B?SATK
δ

))
,

with TK the accumulated time over the K episodes.

Proof part 1: VISGO properties
26

Lemma
As long as B ≥ B?:
(1) Optimism: Q(i)(s, a) ≤ Qπ?(s, a), for any iteration i ≥ 0

(2) Finite-time near-convergence: VISGO terminates within a finite (polynomially
bounded) number of iteration steps

Proof idea.

(1) We derive a monotonicity property for L̃
Achieved by carefully tuning the constants c1, c2, c3, c4 in the bonus
� Similar argument to analysis of MVP [Zhang et al., 2020]

(2) We derive a contraction property for L̃
Contraction modulus ρ ≤ 1− ν2 < 1, where ν := min

s,a
P̃s,a,g > 0

� SSP-specific requirement

Proof part 1: VISGO properties
26

Lemma
As long as B ≥ B?:
(1) Optimism: Q(i)(s, a) ≤ Qπ?(s, a), for any iteration i ≥ 0

(2) Finite-time near-convergence: VISGO terminates within a finite (polynomially
bounded) number of iteration steps

Proof idea.

(1) We derive a monotonicity property for L̃
Achieved by carefully tuning the constants c1, c2, c3, c4 in the bonus
� Similar argument to analysis of MVP [Zhang et al., 2020]

(2) We derive a contraction property for L̃
Contraction modulus ρ ≤ 1− ν2 < 1, where ν := min

s,a
P̃s,a,g > 0

� SSP-specific requirement

Proof part 1: VISGO properties
26

Lemma
As long as B ≥ B?:
(1) Optimism: Q(i)(s, a) ≤ Qπ?(s, a), for any iteration i ≥ 0

(2) Finite-time near-convergence: VISGO terminates within a finite (polynomially
bounded) number of iteration steps

Proof idea.

(1) We derive a monotonicity property for L̃
Achieved by carefully tuning the constants c1, c2, c3, c4 in the bonus
� Similar argument to analysis of MVP [Zhang et al., 2020]

(2) We derive a contraction property for L̃
Contraction modulus ρ ≤ 1− ν2 < 1, where ν := min

s,a
P̃s,a,g > 0

� SSP-specific requirement

Proof part 2: Regret Decomposition
27

) First, a bit of notation:

Recall that for now we consider B ≥ B? ≥ 1

I The two VISGO properties (optimism and convergence) hold

Let Vt be the VISGO value at time t

Define the normalized value V t := Vt/B? ∈ [0, 1]

Let CK (resp.TK) be the cumulative cost (resp. time) over the K episodes

) Up next, high-level idea in 1 slide:

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression

,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt)

. B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle

,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

RK = CK −KV π
?

(sinit) .
TK∑
t=1

bt(st, at) + additional terms

.
TK∑
t=1

√
V(P̃st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(P̂st,at , Vt)
nt(st, at)

.
TK∑
t=1

√
V(Pst,at , Vt)
nt(st, at)

.
√
SA

√√√√ TK∑
t=1

V(Pst,at , Vt) . B?
√
SA

√√√√ TK∑
t=1

V(Pst,at , V t)

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2) +

(
CK

B?

)2
)1/4

. B?
√
SA

(
TK∑
t=1

V(Pst,at , (V t)
2d)︸ ︷︷ ︸

≤TK (∀d)

+

(
CK

B?

)2d−1)2−d

.
√
B?SACK log TK

bounding the
Bellman error

(Vt approximates
fixed point of L̃)

bonus expression,
P̃ /P̂/P relation

pigeonhole principle,
value normalization

law of total
variance...

...recursively...

... expand up to
higher order
d = log TK

=⇒ Solve a quadratic inequality in CK

and plug it back into the regret

=⇒ RK . B?
√
SAK log TK

Finite-horizon
[Zhang et al., 2020]

SSP
[this work]

Terms appearing
in recursions

HK∑
t=1

rt

TK∑
t=1

ct = CK

How they are
handled

bounded by K
by assumption

(total reward ≤ 1)

eliminated by
quad. ineq. in CK

thanks to regret def.

Theorem (Intermediate regret bound)

Assume that

1 B ≥ B? ≥ 1,

2 the value function of any improper policy has at least one unbounded component.

Then w.p. 1− δ,

RK = O
(
B?
√
SAK log

(B?SATK
δ

)
+BS2A log2

(B?SATK
δ

))
.

Relies on condition 2 and depends on TK :

I Circumvented with cost perturbation: cη(s, a)← max{c(s, a), η}

I If costs are lower bounded by η > 0, then condition 2 holds and TK ≤
CK

η
I Regret . “Regret in cost-perturbed MDP” + ηT?K
I There remains to tune the cost perturbation:

η ←

{
1

poly(K)
1

X·poly(K) if loose prior knowledge X ≈ T? is available

Relies on B being properly tuned: I Parameter-free scheme to adaptively tune B

Theorem (Intermediate regret bound)

Assume that

1 B ≥ B? ≥ 1,

2 the value function of any improper policy has at least one unbounded component.

Then w.p. 1− δ,

RK = O
(
B?
√
SAK log

(B?SATK
δ

)
+BS2A log2

(B?SATK
δ

))
.

Relies on condition 2 and depends on TK :

I Circumvented with cost perturbation: cη(s, a)← max{c(s, a), η}

I If costs are lower bounded by η > 0, then condition 2 holds and TK ≤
CK

η
I Regret . “Regret in cost-perturbed MDP” + ηT?K
I There remains to tune the cost perturbation:

η ←

{
1

poly(K)
1

X·poly(K) if loose prior knowledge X ≈ T? is available

Relies on B being properly tuned: I Parameter-free scheme to adaptively tune B

1 Online SSP

2 3 Desirable Properties

3 Our Results & Related Work

4 EB-SSP Algorithm

5 Analysis Overview

6 Parameter-Free EB-SSP

Unknown B?
I Unknown range of the optimal value function

31

Exploration bonus requires a bound on B? := ‖V π?‖∞

Setting1 Finite-horizon Finite-horizon
w/ bounded total reward

Discounted SSP

Bound on ‖V π
?
‖∞ H 1 1/(1− γ) ?

If B < B?, optimism and convergence of VISGO may not hold

It may be impossible to estimate B? online (some states may be unreachable)

1In average reward: open question of [Qian et al., 2019]: Is it possible to design an exploration bonus
strategy without prior knowledge of the “optimal range”?

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

(unknown)

Inter-episode increment of B:

Whenever a new episode k begins, set B ← max{B,
√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

τ?
(unknown)

R1: First regime
I Underestimate B < B?
How to bound regret?
How to bound regret?

R2: Second regime
I Overestimate B ≥ B?
How to bound regret?
How to bound regret?

Inter-episode increment of B:

Whenever a new episode k begins, set B ← max{B,
√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

τ?
(unknown)

R1: First regime
I Underestimate B < B?
I How to bound regret?

Regret(R1) ≤ Costs(R1) ≤ ?

R2: Second regime
I Overestimate B ≥ B?
I How to bound regret?

Regret(R2) . B?
√
SAK +BS2A

Inter-episode increment of B:

Whenever a new episode k begins, set B ← max{B,
√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

τ?
(unknown)

R1: First regime
I Underestimate B < B?
I How to bound regret?

Regret(R1) ≤ Costs(R1) ≤ ?

R2: Second regime
I Overestimate B ≥ B?
I How to bound regret?

Regret(R2) . B?
√
SAK +BS2A

Inter-episode increment of B:

Whenever a new episode k begins, set B ← max{B,
√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

τ?
(unknown)

R1: First regime
I Underestimate B < B?
I How to bound regret?

Regret(R1) ≤ Costs(R1) ≤ ?

R2: Second regime
I Overestimate B ≥ B?
I How to bound regret?

Regret(R2) . B?
√
SAK +BS2A

Inter-episode increment of B:
Whenever a new episode k begins, set B ← max{B,

√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

τ?
(unknown)

R1: First regime
I Underestimate B < B?
I How to bound regret?

Regret(R1) ≤ Costs(R1) ≤ ?

R2: Second regime
I Overestimate B ≥ B?
I How to bound regret?

Regret(R2) . B?
√
SAK +BS2A

Inter-episode increment of B:
Whenever a new episode k begins, set B ← max{B,

√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

τ?
(unknown)

R1: First regime
I Underestimate B < B?
I How to bound regret?

Regret(R1) ≤ Costs(R1) ≤ ?

R2: Second regime
I Overestimate B ≥ B?
I How to bound regret?

Regret(R2) . B?
√
SAK +BS2A

Inter-episode increment of B:
Whenever a new episode k begins, set B ← max{B,

√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Parameter-Free EB-SSP
32

t
t = 1

B ← 1

τ?
(unknown)

R1: First regime
I Underestimate B < B?
I How to bound regret?

Regret(R1) ≤ Costs(R1) . α · φ

R2: Second regime
I Overestimate B ≥ B?
I How to bound regret?

Regret(R2) . B?
√
SAK +BS2A

Inter-episode increment of B:
Whenever a new episode k begins, set B ← max{B,

√
k/(S3/2A1/2)}

I For large enough k, R2 is reached. But risk of getting stuck in an episode in R1...

Intra-episode increments of B:

i) Track range of each VISGO iterate: if ‖V (i)‖∞ > B, then double B ← 2B

ii) Track cumulative cost C: if C ≥ φ, then double B ← 2B

I Cost threshold φ ≈ kB +B
√
SAk +BS2A

I Violated at most α = O(logB?) times in R1

Regret of Parameter-Free EB-SSP
33

Theorem
The regret of parameter-free EB-SSP can be bounded w.p. 1− δ by

RK = O

(
R?K log

(
B?SATK

δ

)
+B3

?S
3A log3

(
B?SATK

δ

))
,

where R?K bounds the regret of EB-SSP in the case of known B?.

I We can circumvent the knowledge of B? up to logarithmic and lower-order terms.

I Only algorithmic change to EB-SSP:
dual tracking of the cumulative costs and VISGO iterates,
careful increment of the proxy B in the bonus.

Regret of Parameter-Free EB-SSP
33

Theorem
The regret of parameter-free EB-SSP can be bounded w.p. 1− δ by

RK = O

(
R?K log

(
B?SATK

δ

)
+B3

?S
3A log3

(
B?SATK

δ

))
,

where R?K bounds the regret of EB-SSP in the case of known B?.

I We can circumvent the knowledge of B? up to logarithmic and lower-order terms.

I Only algorithmic change to EB-SSP:
dual tracking of the cumulative costs and VISGO iterates,
careful increment of the proxy B in the bonus.

Conclusion and Outlook
34

Summary
EB-SSP is the first algorithm in online SSP to
1) achieve the minimax regret rate of Õ(B?

√
SAK) while simultaneously being

parameter-free
2) achieve horizon-free regret in various cases (e.g., positive costs, or general costs with

an order-accurate estimate of T? available)

Future directions
Open question: simultaneously minimax, parameter-free and horizon-free?
Tight sample complexity bounds for SSP
SSP beyond tabular & model-based � [Vial et al., 2021, Chen et al., 2021]

Beyond the theory?
On the question of when to reset in goal-oriented deep RL

Details are in our paper:

Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret

https://arxiv.org/abs/2104.11186

Jean Tarbouriech*, Runlong Zhou*, Simon S. Du, Matteo Pirotta, Michal Valko, Alessandro Lazaric

Thank you

https://arxiv.org/abs/2104.11186

Dimitri Bertsekas. Dynamic programming and optimal control, volume 2. 1995.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems. Mathematics of
Operations Research, 16(3):580–595, 1991.

Liyu Chen and Haipeng Luo. Finding the stochastic shortest path with low regret: The adversarial cost and
unknown transition case. arXiv preprint arXiv:2102.05284, 2021.

Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Minimax regret for stochastic shortest path with adversarial costs
and known transition. arXiv preprint arXiv:2012.04053, 2020.

Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, and Haipeng Luo. Implicit finite-horizon approximation and
efficient optimal algorithms for stochastic shortest path. arXiv preprint arXiv:2106.08377, 2021.

Alon Cohen, Yonathan Efroni, Yishay Mansour, and Aviv Rosenberg. Minimax regret for stochastic shortest
path. arXiv preprint arXiv:2103.13056, 2021.

Mehdi Jafarnia-Jahromi, Liyu Chen, Rahul Jain, and Haipeng Luo. Online learning for stochastic shortest path
model via posterior sampling. arXiv preprint arXiv:2106.05335, 2021.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. Journal
of Machine Learning Research, 11(Apr):1563–1600, 2010.

Nan Jiang and Alekh Agarwal. Open problem: The dependence of sample complexity lower bounds on planning
horizon. In Conference On Learning Theory, pages 3395–3398. PMLR, 2018.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of
London London, England, 2003.

Shiau Hong Lim and Peter Auer. Autonomous exploration for navigating in mdps. In Conference on Learning
Theory, pages 40–1. JMLR Workshop and Conference Proceedings, 2012.

Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Exploration bonus for regret minimization in
discrete and continuous average reward mdps. In Advances in Neural Information Processing Systems, pages
4891–4900, 2019.

Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversarially changing costs. arXiv preprint
arXiv:2006.11561, 2020.

Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds for stochastic
shortest path. In International Conference on Machine Learning, pages 8210–8219. PMLR, 2020.

Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric. No-regret
exploration in goal-oriented reinforcement learning. In International Conference on Machine Learning, pages
9428–9437. PMLR, 2020a.

Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Improved sample complexity for
incremental autonomous exploration in mdps. In Advances in Neural Information Processing Systems,
volume 33, pages 11273–11284, 2020b.

Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Sample complexity bounds for
stochastic shortest path with a generative model. In Algorithmic Learning Theory, pages 1157–1178. PMLR,
2021.

Daniel Vial, Advait Parulekar, Sanjay Shakkottai, and R Srikant. Regret bounds for stochastic shortest path
problems with linear function approximation. arXiv preprint arXiv:2105.01593, 2021.

Ruosong Wang, Simon S. Du, Lin F. Yang, and Sham M. Kakade. Is long horizon RL more difficult than short
horizon RL? In Advances in Neural Information Processing Systems, 2020.

Zihan Zhang, Xiangyang Ji, and Simon S Du. Is reinforcement learning more difficult than bandits? a
near-optimal algorithm escaping the curse of horizon. arXiv preprint arXiv:2009.13503, 2020.

Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon S Du. Variance-aware confidence set: Variance-dependent
bound for linear bandits and horizon-free bound for linear mixture mdp. arXiv preprint arXiv:2101.12745,
2021.

Extra slides

SSP Model with Positive Costs
39

Assumption

Costs are lower bounded by an unknown constant cmin > 0.

Corollary

Running EB-SSP with B = B? ≥ 1 and η = 0 gives w.p. 1− δ

RK = O

(
B?
√
SAK log

(
KB?SA

cminδ

)
+B?S

2A log2
(
KB?SA

cminδ

))
.

I (Nearly) minimax and horizon-free

SSP Model with General Costs
40

� T? Unknown

Corollary
Running EB-SSP with B = B? ≥ 1 and η = K−n for any constant n > 1 gives w.p. 1− δ

RK = O
(
nB?
√
SAKL+

T?
Kn−1

+
nT?
√
SAL

Kn−1/2
+ n2B?S

2AL2
)
, L := logKT?SAδ

−1.

I (Nearly) minimax and “horizon-vanishing”

� Order-Accurate Estimate of T? Available

Assumption
Prior knowledge: a quantity X s.t.T?/υ ≤ X ≤ λT ζ? for some unknown constants υ, λ, ζ ≥ 1.

Corollary
Running EB-SSP with B = B? ≥ 1 and η = (XK)−1 gives w.p. 1− δ

RK = O

(
B?
√
SAK log

(
KT?SA

δ

)
+B?S

2A log2

(
KT?SA

δ

))
.

I (Nearly) minimax and horizon-free

Case B? > 0
41

Theorem (Intermediate regret bound)

Assume that
1 B ≥ B?,

2 the value function of any improper policy has at least one unbounded component

Then w.p. 1− δ,

RK = O
(√

(B2
? +B?)SAK log

(max{B?, 1}SATK
δ

)
+BS2A log2

(max{B?, 1}SATK
δ

))
,

with TK the accumulated time over the K episodes.

	Online SSP
	3 Desirable Properties
	Our Results & Related Work
	EB-SSP Algorithm
	Analysis Overview
	Parameter-Free EB-SSP
	References
	References

