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Introduction

+0.8

* Markov decision processes (MDPs)
e State space §, with size S
* Action space A, with size A
Reward function R(s, a)
Initial state distribution v(s)
Transition probability P(s’|s, a)
Maximum transition degree I' =
max||P(- |s, a)l],




Introduction

* Episodic RL for MDPs

* Planning horizon H
e Play a policy * in episode k
* Regret

* Play for K episodes

* Regret = Optimal cumulative reward — sum of expected cumulative rewards of each ¥
* Minimax regret = worst case regret



Motivation of LMDPs

* (Generic) MDPs have been solved
* Minimax regret matches lower-bound

 Partially Observable MDPs are quite hard

* Instead of observing s, the agent observes 0~0(0|s)
* Sample complexity lower-bound is exponential



Motivation of LMDPs

* Something in the middle — Latent MDPs (LMDPs)

* Hidden state is "decomposable”, and the unobserved part is static
e [s=(m,0),a]l »s'=(m,0")
 Strictly harder than MDPs!

* Under some assumptions, LMDP is strictly easier than POMDPs!
e Context in hindsight

e LMDPs are useful

* Modeling combinatorial optimization problems
* Multi-task learning



Motivation of variance-dependent regrets

e Some LMDPs are easier than the others

* Applying an algorithm on them yields regrets better than worst-case

 Example: Deterministic MDP as a special case of LMDP
e Regret lower bound Q(SA4), no dependency on K
* Specially designed algorithms can have regret upper bound O(S4)



Formulation

 LMDPs [Kwon et al.,2021]
* A distribution of M MDPs M = {My, ..., My}
* Each with weight (probability) w4, ..., wy
* All MDPs share the same states, actions and horizon

* But have their own reward function R,,,, transition P,, and initial state
distribution v,,

e Core difficulty is learning P, so assume w, v and R are known



Planning in LMDPs

* Alpha vectors

* History dependent i, let h be any history, a be any action
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e Generalized value function and Q-function of each MDP



Problem setup

* Generally, follow the episodic RL for MDPs setting

* At the beginning of each episode, draw an MDP M,,, according to the
probability

* When the episode ends (completes H steps), tell the agent m

e Context in hindsight [Kwon et al.,2021]
* Drastically reduce the sample complexity lower-bound to polynomial.



Related works

* Minimax regret with context in hindsight
Theorem 3.3 The regret of the Algorithm 1 is bounded by:

Regret(K) < Z VE = ViR S HSvVMAN.,
k=1

where N = HK, i.e., total number of taken actions.

* Often assume reward of each episode bounded by 1 almost surely,
so regret is G(VMSZAHK)

e [Kwon et al.,2021] ‘




Contribution

* Define variance to characterize the difficulty of each LMDP

* Aregret better than G(VMSZAHK) with context in hindsight

* A lower bound for any class of variance-bounded LMDPs




Maximum policy-value variance
* For any policy m:
H
Var™ := V(wov,a(-)) + E, ZV(Pmust,at, o, (hyagry)) | -

* Further define Var™ := max Var{ (s).
S

* Maximum policy-value variance is defined as Var”* := max Var”.
T



Regret upper bound

Theorem 2. For both the Bernstein confidence set for
LMDP (Algorithm 1 combined with Algorithm 2) and the
Monotonic Value Propagation for LMDP (Algorithm 1
combined with Algorithm 3), with probability at least 1 — 0,
we have that

Regret(K) < O(VVar MTSAK + MS?A).

* For deterministic MDPs:
eVar*r =0, M =1andl'=1
* Regret(K) < 0(S2%4)
* Only depend on poly(log(K)) instead of poly(K)!
* Have a gap of S compared to SA



Regret lower bound

Theorem 3. Assume that S > 6, A > 2, M < [%J'

and 0 < V < O(1). For any algorithm w, there exists
an LMDP M . such that:

e Var® = O(V);

o For K > Q(M? + MSA), its expected regret in M
after K episodes satisfies

i (V* . Vk)
k=1

E

Mﬂ,w] > Q(VVMSAK).
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