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Motivation

* Machine Learning is good at Combinatorial Optimization problems
* Is (any part of) this success explainable?

* Online CO matches the nature of Reinforcement Learning
e Sequential decision-making

* Theoretical understanding of RL techniques on online CO
* Curriculum Learning



Example 1

» Secretary Problem (a.k.a. Marriage Problem, Sultan’s Dowry Problem)
* Hire one secretary among n candidates, each with (different) ability score
* Arrive sequentially, but the order is unknown
* Once reject someone, cannot come back and re-hire
* Once hire someone, ends
Maximize the probability of hiring the best candidate

https://www.m2woman.com/when-to-stop-dating-and-settle-down-according-to-math/



Example 1 (cont’d)

e Secretary Problem
* |Isomorphic up to only the relative rank
* n! Permutations (instances), each with equal probability
* Find a policy working averagely well on the instance distribution



Example 2

* Online Knapsack
* nitems arrive sequentially
* Each with value v; and size s; revealed upon arrival
* Total budget B
* Once reject something, cannot come back and re-pick
e To pick something, requires total size < B
* Maximize total value of picked items
* Distribution of instances defined via each (v;, s;)~E, X F, i.i.d.



Formulation

e Latent MDPs [Kwon et al.,2021]
* A distribution of MDPs M = {My, ..., M}
* Each with weight (probability) w4, ..., wy
* All MDPs share states S, actions A, horizon H

* But have their own initial state distribution v,,, reward function r,
(bounded by |0, 1]), transition P,

* Why use this setting?
* Characterize instances and working averagely well



Formulation (cont’d)

* Policy class
* Stationary m: S = A(4)
* Log-linear parameterization

 Assume we have a fixed feature mapping ¢:S X A - R4
e Learn parameter 8, and policy

exp(87T ¢ (s, a))
Xa'ea exp(HTqb(s, a’))

m(als) =



Formulation (cont’d)

* Value functions and entropy regularization
. V”A(s)— hlr(s,a.) +Aln - | M;, m, SO=S]

7T(a |St)
. Qf,’f(s) = Zh= r;(sg,a;) + Aln | M;, 7, (Sg,a0) = (s, a)]

« AT () = Qf ,f(S) Vi (s)
* Goal

ﬂ(a )

. * A
* Find m; = argmax, ¥; w; X5, Vi(So) Vi3 (So)



Prerequisites

e State-action visitation distribution
din(s) =P(sp, =s | M;,m)
Fu(s,a) = d;%" (s)m(als)
. Functlon apprOX|mat|on loss

M H

L(g;0,v) = y:wz- T | E [(AZ%’A(S,CL) —¢'Vin 7'['9((.!‘8))2]

e Fisher information matrix

Z W; Z [ Vo Inmg(als) (Vg 11’171'9(05|S))T}

SGNU H—h



Natural Policy Gradient

Algorithm 3 NPG: Sample-based NPG (full version).
1: Input: Environment E; learning rate n; episode number T'; batch size N; initialization f; sampler 7g;
regularization coefficient A; entropy clip bound U; optimization domain G.

* Initial param: 6,

2: fort«0,1,...,T—1do
3:  Initialize F} « 0%%4 V, « 0°.
4: forn+0,1,...,N—1do
) . 1Ly )
Update. 5. forh«01,.. . H—1do
0 9 + 6: if 7, is not None then
t+1 — t T]gt 7: sh,ah,AH:h(sh,ah) — Sa].]iple (E, 7, True, ms, h, A, U) (see Alg.4).

/{ e s 1171 ¢ At ,
[/ s,a~d,, estimate A", _,(s,a).

8: else
d gt =~ 9: sh,ah,ﬁg__h(sh,ah) <+ Sample (F,m,False, my, h, A\, U).
. t /] s,a~ dil.h: estimate A:;i‘H p(8,a).
argmingL(g; 0¢,d")  © e
11: end for
12: Update:

H-1
F, < F,+ ) Volnm,(an|sn) (Vo Inm, (anlsn)) ",
h=0

H-1
V; — Vt + Z AH—h(Sh1ah)v9 hlﬂ'gt (ah|sh).
h=0

13: end for

14:  Call any solver to get g; « arg min g gTth —2g" @t.
15:  Update ;1 < 0; + ng;.

16: end for

17: Return: fr.




Analysis

* Assumption

* gf is the true minimizer of L at time t

* d” is the visitation distribution of the optimal policy
p(s, )|, < B

Definition 4. Define for 0 <t < T':
o (Excess risk) €sar := max; E[L(g:; 05, d*) — L(g5; 6, dY)];
o (Transfer error) enias := max; E[L(g;;6:,d")];

T
o (Relative condition number) Kk := max; £ [Supxeﬁd I—I-r%] Note that term inside the expectation is

a random gquantity as 0; is random.

The expectation is with respect to the randomness in the sequence of weights go, g1,...,97.



Analysis (cont’d)

* Main result
Theorem 6. With Def. 4, 5 and 8, our algorithm enjoys the following performance bound:

A1 =T H1® B2G*?
i: ( d ) (ﬂ.ﬂ) + n + \/ H'Ebias + Hﬁ'ffstat:

. Ayt A
E| mn V V T (1— T+ 5

0<t<T

where ®(mg) is the Lyapunov potential function which is only relevant to the initialization.

* Interpretation

* Linear convergence (A = 0 gets 1 /\/T rate)
* €pigs depends on the design of feature mapping, and is hardly removable

* €.t depends on the closeness between g, and g7, can be reduced with a
bigger batch-size

* k shows the closeness between d* and d¥f, and is of our special interest



Curriculum Learning [Bengio et al.,2009]

* First learn small scale problems, then use this model to initialize large
scale learning

* Mentioned as “Bootstrapping” in [Kong et al.,2019]
* They suggested a series of curricula: 10, 20, ..., 200
* No need to do this, because reducing k is sufficient

* Even works for changing distribution
* Uniform over 10! instances
* Arbitrary complex for 200! Instances
* Aslong as the optimal policies are “Similar”, it transfers well



Curriculum Learning for SP

* Distribution modeling

* Suppose for each candidate i, it has probability P; to be the so-far best
* Forclassical SP, P; = 1/i

* Optimal policy
* Always a p-threshold policy: accept if and only if i/n > p and is so-far best
* For classical SP,p = 1/e



Curriculum Learning for SP (cont’d)

 Comparing k under with/without curriculum learning

Theorem 7. Assume that each candidate is independent of others and the i-th candidate has a probability
P; of being the best so far (Sec.4.1). Assume the optimal policy is a p-threshold policy and the sampling
policy is a g-threshold policy. There exists a policy parameterization such that:

[ np| 1
Kol = ({ 1= g1 280 4P )?
q > p,

i—1

naive — QLHPJ 1: 2(1 - P; ' 1

e = © max{ mex T j)} 1)
j=|np|+1

where Keurl and Knaive are K of the sampling policy and the naive random policy, respectively.




Curriculum Learning for SP (cont’d)

e Classical case

. . Infe] g < 1 _1|n/e]
* The target problem is the classical SP Keud = ¢ 1na]7 T =0 g =on L
1: q > e n 1
* General case
Knaive = 2|'an

* The target problem satisfies P; < 1/2

* Failure case
 Best candidate always come as the last one |feun = o0, larger than fnaive = 2"~




Experiments — Secretary Problem
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Experiments — Online Knapsack
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