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Motivation

• Machine Learning is good at Combinatorial Optimization problems
• Is (any part of) this success explainable?

• Online CO matches the nature of Reinforcement Learning
• Sequential decision-making

• Theoretical understanding of RL techniques on online CO
• Curriculum Learning



Example 1

• Secretary Problem (a.k.a. Marriage Problem, Sultan’s Dowry Problem)
• Hire one secretary among 𝑛 candidates, each with (different) ability score

• Arrive sequentially, but the order is unknown

• Once reject someone, cannot come back and re-hire

• Once hire someone, ends

• Maximize the probability of hiring the best candidate

https://www.m2woman.com/when-to-stop-dating-and-settle-down-according-to-math/



Example 1 (cont’d)

• Secretary Problem
• Isomorphic up to only the relative rank

• 𝒏! Permutations (instances), each with equal probability

• Find a policy working averagely well on the instance distribution



Example 2

• Online Knapsack
• 𝑛 items arrive sequentially

• Each with value 𝑣𝑖  and size 𝑠𝑖  revealed upon arrival

• Total budget 𝐵

• Once reject something, cannot come back and re-pick

• To pick something, requires total size ≤ 𝐵

• Maximize total value of picked items

• Distribution of instances defined via each 𝑣𝑖 , 𝑠𝑖 ~𝐹𝑣 × 𝐹𝑠 i.i.d.



Formulation

• Latent MDPs [Kwon et al.,2021]
• A distribution of MDPs ℳ = ℳ1, … , ℳ𝑀

• Each with weight (probability) 𝒘𝟏, … , 𝒘𝑴

• All MDPs share states 𝑺, actions 𝑨, horizon 𝑯

• But have their own initial state distribution 𝝂𝒎 reward function 𝒓𝒎
(bounded by [𝟎, 𝟏]), transition 𝑷𝒎

• Why use this setting?
• Characterize instances and working averagely well



Formulation (cont’d)

• Policy class
• Stationary 𝜋: 𝑆 → Δ(𝐴)

• Log-linear parameterization
• Assume we have a fixed feature mapping 𝜙: 𝑆 × 𝐴 → ℝ𝑑

• Learn parameter 𝜃, and policy

𝜋 𝑎 𝑠 =
exp 𝜃⊤𝜙 𝑠, 𝑎

σ
𝑎′∈𝐴 exp 𝜃⊤𝜙 𝑠, 𝑎′



Formulation (cont’d)

• Value functions and entropy regularization

• 𝑉𝑖,ℎ
𝜋,𝜆 𝑠 = 𝔼 σ𝑡=0

ℎ−1 𝑟𝑖 𝑠𝑡 , 𝑎𝑡 + 𝜆 ln
1

𝜋(𝑎𝑡|𝑠𝑡)
 | ℳ𝑖 , 𝜋, 𝑠0 = 𝑠

• 𝑄𝑖,ℎ
𝜋,𝜆 𝑠 = 𝔼 σ𝑡=0

ℎ−1 𝑟𝑖 𝑠𝑡 , 𝑎𝑡 + 𝜆 ln
1

𝜋(𝑎𝑡|𝑠𝑡)
 | ℳ𝑖 , 𝜋, (𝑠0, 𝑎0) = (𝑠, 𝑎)

• 𝐴𝑖,ℎ
𝜋,𝜆 𝑠 = 𝑄𝑖,ℎ

𝜋,𝜆 𝑠 − 𝑉𝑖,ℎ
𝜋,𝜆 𝑠

• Goal

• Find 𝜋𝜆
⋆ = argmax𝜋 σ𝑖 𝑤𝑖 σ𝑠0

𝜈𝑖(𝑠0) 𝑉𝑖,ℎ
𝜋,𝜆 𝑠0



Prerequisites

• State-action visitation distribution
• 𝑑𝑖,ℎ

𝜋 (𝑠) = ℙ 𝑠ℎ = 𝑠 | ℳ𝑖 , 𝜋

• 𝑑𝑖,ℎ
𝜋 𝑠, 𝑎 = 𝑑𝑖,ℎ

𝑠0,𝜋
𝑠 𝜋(𝑎|𝑠)

• Function approximation loss

• Fisher information matrix



Natural Policy Gradient

• Initial param: 𝜃0

• Update: 
𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑔𝑡

• 𝑔𝑡 ≈
argmin𝑔𝐿 𝑔; 𝜃𝑡 , 𝑑𝑡



Analysis

• Assumption
• 𝑔𝑡

⋆ is the true minimizer of 𝐿 at time 𝑡

• 𝑑⋆ is the visitation distribution of the optimal policy

• 𝜙(𝑠, 𝑎)
2

≤ 𝐵



Analysis (cont’d)

• Main result

• Interpretation
• Linear convergence (𝜆 = 0 gets 1/ 𝑇 rate)

• ϵbias depends on the design of feature mapping, and is hardly removable

• ϵstat depends on the closeness between 𝑔𝑡 and 𝑔𝑡
⋆, can be reduced with a 

bigger batch-size

• 𝜅 shows the closeness between 𝑑⋆ and 𝑑𝑡, and is of our special interest



Curriculum Learning [Bengio et al.,2009]

• First learn small scale problems, then use this model to initialize large 
scale learning

• Mentioned as “Bootstrapping” in [Kong et al.,2019]
• They suggested a series of curricula: 10, 20, … , 200

• No need to do this, because reducing 𝜿 is sufficient

• Even works for changing distribution
• Uniform over 10! instances

• Arbitrary complex for 200! Instances

• As long as the optimal policies are “Similar”, it transfers well



Curriculum Learning for SP

• Distribution modeling
• Suppose for each candidate 𝑖, it has probability 𝑃𝑖  to be the so-far best

• For classical SP, 𝑃𝑖 = 1/𝑖

• Optimal policy
• Always a 𝒑-threshold policy: accept if and only if 𝑖/𝑛 > 𝑝 and is so-far best

• For classical SP, 𝑝 = 1/e



Curriculum Learning for SP (cont’d)

• Comparing 𝜅 under with/without curriculum learning



Curriculum Learning for SP (cont’d)

• Classical case
• The target problem is the classical SP

• General case
• The target problem satisfies 𝑃𝑖 ≤ 1/2

• Failure case
• Best candidate always come as the last one



Experiments – Secretary Problem



Experiments – Online Knapsack
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