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Motivations

* Tasks from production teams

* Arepository
* Code
* Document

e Database files

* User Questions
* What is the alternative method for X if there is no Y?
 Document retrieval
* Create a map, colored by salary
e Coding, database query
* Show me the consequences when demand A increases by 50%
* Coding




Challenges

N

* Privacy * Cost
* Keep the proprietary data * Smaller model & shorter
private (local), never leave the prompt: dedicated to the

house tasks, faster response
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Task Abstract

 Autonomous exploration in a file system given natural language

gueries ' We focus on file locating in this work

* Locate, modify and execute the correct files

* A local, small language model
* Privacy, cost

* Contextual reinforcement learning
* Find shortest path given context (query)
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Current LM/RL Approaches

* Token-generation as RL:
e Each token as an action
* Instead of embodied tasks, games, or interactive decision-making

Not suitable for our production tasks
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Current LM/RL Approaches

e Bandit v.s. MDP:

* Most RLHF work consider one-step bandit problems

Complex environments usually contains multiple steps

* Frozen LMs as assistive agents to help other policy agents in MDPs

Why not directly interact with MDPs?
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Current LM/RL Approaches

e Offline (v.s. Online):

» Offline dataset / SFT insufficient for exploration in complex environments
* LMs unable to self-correct during interactions without external feedback

(Huang et al., 2023)
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Markov Decision Processes (MDPs)

e State space &
* Action space A(s) foreachs € §

* Planning horizon H

* Reward function R(s,a) € [—1,1]
 Transition model T'(s,a) € § ‘
* Initial state distribution u ‘

We study deterministic

MDPs which are
sufficient for our tasks
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Policy and Value Function

* Policym: § = A(A) '
e Value functions and Q-functions:

H
Vir(s) :=E, Zrt Sp =8|,

Qr(s,a) :=E, Z r: | (Sh,an) = (s,a)

* Expected return: J™ == Eg _, [V (s1)]
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Policy Gradient

 REINFORCE algorithm (Sutton et al. (1999)):
* Policy gradient theorem:

H
VoJ™ = Z E, qqre Q% (s,a)Volnmy(als)]
h=1

e Update step:

Orr1 =0t + Ve J ™0



LM as an RL policy

e State represented in tokens s = (s, S5, ...,5;) €S
* Action also represented in tokens a = (aq, a,, ..., ax) € A(s)
* Autoregressive policy: a;.1 ~ mg(- |s,aq.;)



Training

 Stage 1: Supervised fine-tuning (SFT)

e Gather an offline dataset D from human (GPT-4) or algorithmic solutions
* For better instruction following (generating valid reflections)

* Stage 2: Reinforcement learning fine-tuning (RLFT) ‘

* Online policy gradient (or PPO)

* For better exploration
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Reflection

* Assume access to a (external) reflection model (e.g., GPT-4) R(s)
* Policy now: a;.; ~ mg(: |s,R(s),ay.;)
* For simplicity, assume from now R(s) is included in s
* Add reflection data into D

* Train (SFT) a local reflect model §¢ using D

N L,
1 . ~
Lrefiect () = ~ Y > —log Ry (R j|si, Rij—1)

i=14j=1



Simplifying Action Generation

* Highly possible for LMs to generate invalid actions due to different
A(S)

 Remedy 1: SayCan / action prompt normalization (Ahn et al., 2022;
Tan et al., 2024)

* Enumerate a € A(s) and normalize: pg(als) =

* Time complexity: @( |s|? + DiaeAls) alz)
* In our experiments |A(s)| =~ 20, |s| = 500, |a] =




Simplifying Action Generation

 Remedy 2 (ours): Single-prompt action enumeration
* Like language classification tasks
* Action enumeration function a(c/l(s)) = (1,a;2,a,; ...)

* Input (S, a(ffl(s))), output only the choice number
* Retain only the logits corresponding to the choice token

» Time complexity: O(|s1? + Xgeacslal?)
* 20x faster!



Curriculum Learning

e Use an ordering of tasks to help training (Elman, 1993; Bengio et al.,
2009)

* Add extra reward signals when reaching some milestones

 Start from problems with shorter horizons then increase



Negative Data

» Reflection model must be able to correct errors
* Only optimal or oracle trajectories in SFT data is insufficient

* Perturb each action on an optimal trajectory and tell GPT-4 it is sub-
optimal

*
! -~z
N\



Full Pipeline

1. SFT
[P .
Y i
s N -
- + 4 I
Observation @ Vo O Reflection :
-You are in the Taking the tomato .
4 middle of a room. —> | to the microwave is -I
IY;;u asieab?n:?b;"e; Reflect correct. Next step is to |
o ’ ’ Agent place the tomato ... .
|
§ ) ‘L y Database I
“Possible Actions | | ' ) |
oss1ple Actions .
==~ Memory |
EIlVerInment L a Task: Cook Tomato |
- Llose Act 0: Go to fridge —_— R S
i ) ;ufr?wav: , Obs 0: It is closed v Action: 2 |
. u omato 1n » = e o o o
microwave Act 4: Open microwave
! 3. Go to cabinet Obs 4: You see a mug 1. SFT
| \ /

i [ Reward: +1 ]
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Benchmarks - AutoExplore

* Find the correct file in a file system for a natural language query
* Sandbox

* Protect original files
* Track changed files

* Copilot
* Build prompts
* Mediate between sandbox and language model



Benchmarks - Taxi

* Represent OpenAl Gym’s taxi environment
In text

* More challenges

* Invalid pickup / dropoff kills the game
* Bumping into wall kills the game

University of Washington
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Benchmarks - ALFWorld

* Adapted from Textworld (Cote et al., 2019) /
Alfworld (Shridhar et al., 2020)

* Navigate in a text environment to complete a
given goal

versity of Washington
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Results

Mol | e | e e | o
Mistral 7B 34% 3% 7% 0% 0%
Open Source Llama?2 7B-chat 2% 1% 3% 0% 0%
Orca-2 7B 6% 1% 1% 0% 0%
SFT Only GPT-2 XL 1.56B 4% 9% 7% 0% 0%
RLFT Only GPT-2 XL 1.56B 12% 3% 2% 0% 0%
SFT+RLFT (w/o reflection) | GPT-2 XL 1.56B 20% 4% 6% 0% 66%
SFT+RLFT (w/o negative) | GPT-2 XL 1.56B 33% 12% - - -
Reflect-RL (Ours) GPT-2 XL 1.56B 36 % 17 % 58 % 29 % 74 %
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