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• Tasks from production teams
• A repository

• Code

• Document

• Database files

• User Questions
• What is the alternative method for X if there is no Y?

• Document retrieval

• Create a map, colored by salary
• Coding, database query

• Show me the consequences when demand A increases by 50%
• Coding
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Motivations
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Challenges

• Privacy
• Keep the proprietary data 

private (local), never leave the 
house

• Cost
• Smaller model & shorter 

prompt: dedicated to the 
tasks, faster response
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• Autonomous exploration in a file system given natural language 
queries
• Locate, modify and execute the correct files

• A local, small language model
• Privacy, cost

• Contextual reinforcement learning
• Find shortest path given context (query)
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Task Abstract

We focus on file locating in this work
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• Token-generation as RL:
• Each token as an action

• Instead of embodied tasks, games, or interactive decision-making
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Current LM/RL Approaches

Not suitable for our production tasks
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• Bandit v.s. MDP:
• Most RLHF work consider one-step bandit problems

• Frozen LMs as assistive agents to help other policy agents in MDPs
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Current LM/RL Approaches

Complex environments usually contains multiple steps

Why not directly interact with MDPs? 
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• Offline (v.s. Online):
• Offline dataset / SFT insufficient for exploration in complex environments

• LMs unable to self-correct during interactions without external feedback
(Huang et al., 2023)
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Current LM/RL Approaches

Need online interaction
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Markov Decision Processes (MDPs)

• State space 𝒮

• Action space 𝒜(𝑠) for each s ∈ 𝒮

• Planning horizon 𝐻

• Reward function 𝑅 𝑠, 𝑎 ∈ [−1,1]

• Transition model 𝒯 𝑠, 𝑎 ∈ 𝒮

• Initial state distribution 𝜇 We study deterministic 
MDPs which are 

sufficient for our tasks
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• Policy 𝜋: 𝒮 → Δ(𝒜)

• Value functions and Q-functions:

• Expected return: 𝐽𝜋 ≔ 𝔼𝑠1∼𝜇 𝑉1
𝜋 𝑠1
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Policy and Value Function

Probability simplex
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• REINFORCE algorithm (Sutton et al. (1999)):
• Policy gradient theorem:

• Update step:
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Policy Gradient
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• State represented in tokens 𝑠 = 𝑠1, 𝑠2, … , 𝑠𝐿 ∈ 𝒮

• Action also represented in tokens 𝑎 = 𝑎1, 𝑎2, … , 𝑎𝐾 ∈ 𝒜(𝑠)

• Autoregressive policy: 𝑎𝑖+1 ∼ 𝜋𝜃(⋅ |𝑠, 𝑎1:𝑖)
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LM as an RL policy
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• Stage 1: Supervised fine-tuning (SFT)
• Gather an offline dataset 𝒟 from human (GPT-4) or algorithmic solutions

• For better instruction following (generating valid reflections)

• Stage 2: Reinforcement learning fine-tuning (RLFT)
• Online policy gradient (or PPO)

• For better exploration
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Training

Will be mentioned later
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• Assume access to a (external) reflection model (e.g., GPT-4) 𝑅(𝑠)
• Policy now: 𝑎𝑖+1 ∼ 𝜋𝜃(⋅ |𝑠, 𝑅 𝑠 , 𝑎1:𝑖)

• For simplicity, assume from now 𝑅(𝑠) is included in 𝑠

• Add reflection data into 𝒟

• Train (SFT) a local reflect model ෠𝑅𝜙 using 𝒟
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Reflection



University of Washington

• Highly possible for LMs to generate invalid actions due to different 
𝒜 𝑠

• Remedy 1: SayCan / action prompt normalization (Ahn et al., 2022; 
Tan et al., 2024)

• Enumerate 𝑎 ∈ 𝒜(𝑠) and normalize: 𝑝𝜃 𝑎|𝑠 =
𝜋𝜃(𝑎|𝑠)

σ
𝑎′∈𝒜(𝑠)

𝜋𝜃(𝑎
′|𝑠)

• Time complexity: Θ 𝒜 𝑠 𝑠 2 + σ𝑎∈𝒜 𝑠 𝑎 2

• In our experiments 𝒜 𝑠 ≈ 20, 𝑠 ≈ 500, 𝑎 ≈ 5
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Simplifying Action Generation
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• Remedy 2 (ours): Single-prompt action enumeration
• Like language classification tasks

• Action enumeration function 𝛼 𝒜 𝑠 = (1, 𝑎1; 2, 𝑎2; … )

• Input 𝑠, 𝛼 𝒜 𝑠 , output only the choice number

• Retain only the logits corresponding to the choice token

• Time complexity: Θ 𝑠 2 + σ𝑎∈𝒜 𝑠 𝑎 2

• 20x faster!
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Simplifying Action Generation
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• Use an ordering of tasks to help training (Elman, 1993; Bengio et al., 
2009)

• Add extra reward signals when reaching some milestones

• Start from problems with shorter horizons then increase
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Curriculum Learning
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• Reflection model must be able to correct errors
• Only optimal or oracle trajectories in SFT data is insufficient

• Perturb each action on an optimal trajectory and tell GPT-4 it is sub-
optimal
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Negative Data

𝑠1 𝑠2 𝑠3
𝑎1
⋆ 𝑎2

⋆

𝑎2
′

𝑠3
′
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Full Pipeline
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• Find the correct file in a file system for a natural language query

• Sandbox
• Protect original files

• Track changed files

• Copilot
• Build prompts

• Mediate between sandbox and language model
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Benchmarks - AutoExplore
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Benchmarks - Taxi

• Represent OpenAI Gym’s taxi environment 
in text

• More challenges
• Invalid pickup / dropoff kills the game

• Bumping into wall kills the game

+---------+
|T: | : :P|
| : | : : |
| : : : : |
| | : | : |
|D| : | : |
+---------+
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Benchmarks - ALFWorld

• Adapted from Textworld (Cote et al., 2019) / 
Alfworld (Shridhar et al., 2020)

• Navigate in a text environment to complete a 
given goal
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Results
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