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Markov Decision Processes RL environments have different randomness » Under |JCondition 1}, we have Var> < O(1) with high probability if 7

is sampled by any policy and Var* < 1. Without ,
Var® < O(H?) and Var* < H2.

* For deterministic MDPs, Var> = Var* = 0.

" Var* = 0 — Var> = 0, while reverse is not true.

= S states A

..........

= A actions

= Planning horizon H

= Reward function Ry, (s, a) € A(|0,1])
= Transition probability P, (s'|s, a)

* Maximum transition support I' = maxy, ¢, | Pr(:|s, @), R— Results of Model-Based Algorithms
: Games with random Robotics M — —
Policy and value functions environments o The results are under |JCondition 1] and JCondition 2].
: Variance- | Stochastic- | Deterministic-
* 7 = {Th}he( ) Where m, : S — A, optimal 7* Stochastic Deterministic Algorithm | Regret Dependsnt|_Optinl_|_ Optinsl
= Value and @ functions — Eul O(HQ" - SAK + HY°S*A) Yes No No
i i . . . uier o~ 5/2 2
" High variance Zero variance O(VSAK + HY"5°A) No | Yes | No
TN . _ MVP O(WSAK + S?A No | Yes No
Vir(s) =B | > 7| sp =5, . . .
B I Can we design an algorithm which VBV 5 fmin{Vary Var' K} SA 1+ TSA) Yes | Yes | Yes
H automatically exploits randomness?
L bound QO(VSAK) / Q(SA
Qh(s,0) =Er | ) 1e| (sp.ap) = (s.0) |- ower boun (VSAK) / S{SA) i . :

t=h . ay . .
- - Total Multi-Step Conditional Variance
Episodic reinforcement learnin . O x D
P g For trajectory = = {sy, aj,}e( 7> define Q* could be as large as (1) and HQ* > Varz.
, , .1 9 I 1 = MVP-Vrecovers the optimal minimax rate because Var* < O(1), and is
" K episodes, with policies 7, 77, ..., o optimal for deterministic MDPs because variances are 0 and I = 1.
= Performance measure N
K Var7§'] = Z (V(Rh(shv a’h)) + V(Psh,ah,ha Vh+1))'
* k h=1 - i
Regret(K) := > (V{'(sf) — VI (sf)). Results of Model-Free Algorithms
k=1 : _ : k )N , _
Letzthe trajec;ory of ;c(he k t; episode be 7", then we denote Var<k) = Algorithm Regret x;fnndcfﬁt Stg;r;i;::‘:r-
Conditions for MDPs Vaer, and Varg 1= Zkzl Var(k)' Q-learning (UCB-B) 5(VH4SAK + H9/233/2A3/2) No No
UCB-Advantage |O(VHS3SAK + \4/H3358A6K) No Yes
Condition 1:] For any possible trajectory, its total reward in a single Maximum POl‘ICy-Val‘ue Variance Q—Ezzlysittled— 5(\/H3SAK + HGSA) No Yes
episode is upper-bounded by 1. o . Vantage ~
— o , N For deterministic policy , define UCB-Advantage-V 0(\/mm{var§(,var*K}HSA
Condition 2:] The MDP is time-homogeneous, i.e., the transition and This work VSR Yes = Yes
reward are both independent on the timestep h. " - v +3 )2
Lower bound Q(VH°SAK)/ Q(H*SA - -
VarT(s) = B | 2 (V(Rn(spran)) + V(Pyy apiis Vi) ) | 1= 5 < RALGED
=1 | Currently no generic model-free algorithm achieves a con-

e o e . . 1/4
and Var* = MAX ] S VarT (s). stant regret for deterministic MDPs, while ours achieves a K /4 rate.
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