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Preliminaries

Markov Decision Processes

S states

A actions

Planning horizon H

Reward function Rhps, aq P ∆pr0, 1sq

Transition probability Phps1|s, aq

Maximum transition support Γ “ maxh,s,a }Php¨|s, aq}0

Policy and value functions

π “ tπhuhPrHs where πh : S Ñ A, optimal π‹

Value and Q functions
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psh, ahq “ ps, aq
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Episodic reinforcement learning

K episodes, with policies π1, π2, . . . , πk

Performance measure

RegretpKq :“
K
ÿ

k“1
pV ‹

1 psk
1q ´ V πk

1 psk
1qq.

Conditions for MDPs

Condition 1: For any possible trajectory, its total reward in a single

episode is upper-bounded by 1.

Condition 2: The MDP is time-homogeneous, i.e., the transition and

reward are both independent on the timestep h.

Motivation

RL environments have different randomness:
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Reinforcement Learning

Games with random 
environments

Robotics Maze

Stochastic Deterministic

High variance Zero variance
Can we design an algorithm which
automatically exploits randomness?

Total Multi-Step Conditional Variance

For trajectory τ “ tsh, ahuhPrHs, define

VarΣτ :“
H
ÿ

h“1
pVpRhpsh, ahqq ` VpPsh,ah,h, V ‹

h`1qq.

Let the trajectory of the k-th episode be τk, then we denote VarΣ
pkq

:“
VarΣ

τk, and VarΣK :“
řK

k“1 VarΣ
pkq

.

Maximum Policy-Value Variance

For deterministic policy π, define

Varπ1 psq :“ Eπ
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and Var‹ :“ maxπPΠ,sPS Varπ1 psq.

Discussion on Variances

Under Condition 1 , we have VarΣτ ď rOp1q with high probability if τ

is sampled by any policy and Var‹ ď 1. Without Condition 1 ,

VarΣτ ď rOpH2q and Var‹ ď H2.

For deterministic MDPs, VarΣτ “ Var‹ “ 0.
Var‹ “ 0 ùñ VarΣτ “ 0, while reverse is not true.

Results of Model-Based Algorithms

The results are under Condition 1 and Condition 2 .

Algorithm Regret Variance-

Dependent

Stochastic-

Optimal

Deterministic-

Optimal

Euler
rOp

?
HQ‹ ¨ SAK ` H5{2S2Aq Yes No No

rOp
?

SAK ` H5{2S2Aq No Yes No

MVP rOp
?

SAK ` S2Aq No Yes No

MVP-V
This work

rOp

b

mintVarΣK, Var‹KuSA ` ΓSAq Yes Yes Yes

Lower bound Ωp
?

SAKq / ΩpSAq - - -

Remark:

Q‹ could be as large as Ωp1q and HQ‹ ě VarΣτ .
MVP-Vrecovers the optimal minimax rate because Var‹ ď Op1q, and is

optimal for deterministic MDPs because variances are 0 and Γ “ 1.

Results of Model-Free Algorithms

Algorithm Regret Variance-

Dependent

Stochastic-

Optimal

Q-learning (UCB-B) rOp
?

H4SAK ` H9{2S3{2A3{2q No No

UCB-Advantage rOp
?

H3SAK `
4?

H33S8A6Kq No Yes

Q-EarlySettled-
Advantage

rOp
?

H3SAK ` H6SAq No Yes

UCB-Advantage-V
This work

rOp

b

mintVarΣK, Var‹KuHSA

`
4?

H15S5A3Kq
Yes Yes

Lower bound Ωp
?

H3SAKq / ΩpH2SAq - -

Remark: Currently no generic model-free algorithm achieves a con-

stant regret for deterministic MDPs, while ours achieves a K1{4 rate.
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