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Motivation & Goal

ML is good at Combinatorial Optimization (CO) problems — Is (any

part of) this success explainable?

Online CO matches the nature of RL — Sequential decision-making

Theoretical understanding of RL techniques — Curriculum Learning —

on online CO

Example 1: Secretary Problem

Setting:

Hire one secretary among n candidates, each with different score.

Arrive sequentially, but the order is unknown.

Once reject someone, cannot revoke; Once hire someone, ends.

Maximize the probability of hiring the candidate with the highest

score.

Abstraction:

A distribution over all n! permutations (ordering of the candidates).

The observation of the agent can only be “whether the i-th candidate

is the so-far best”, so it cannot distinguish between each permutation.

A policy working averagely well on the instance distribution?

Example 2: Online Knapsack

n items arrive sequentially, value vi and size si revealed upon arrival.

Once reject something, cannot revoke; To pick something, requires

total size ď B.

Maximize total value of picked items.

Distribution of instances: each pvi, siq „ Fv ˆ Fs i.i.d.

Formulation: Latent MDP

A distribution tw1, . . . , wMu over MDPs M “ tM1, . . . , MMu.

Shared state set S , action set A, horizon H .

Possibly distinct initial state distribution νm, transition Pm, reward rm.

Value of policy π, V π, is defined as the w-weighted average on those

of individual MDPs.

Result 1: Natural Policy Gradient for LMDP

Log-linear policy: πθpa|sq “
exppθJφps,aqq

ř

a1PA exppθJφps,a1qq
, where θ P Rd.

Regularized value, Q and advantage functions: V
π,λ
m,hpsq, Q

π,λ
m,hps, aq w.r.t.

reward rmpst, atq ` λ ln 1
πpat|stq

, and A
π,λ
m,hps, aq :“ Q

π,λ
m,hps, aq ´ V

π,λ
m,hpsq.

Visitation distribution: dπ
m,hpsq, dπ

m,hps, aq are the probability that the h-

th step is a certain state(-action pair). rdπ
m,hps, aq :“ dπ

m,hpsq ˝ UnifApaq.

Function approximation loss: Let v be any visitation distribution,

Lpg; θ, vq :“
M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„vm,H´h

„

´

A
πθ,λ
m,h ps, aq ´ gJ∇θ ln πθpa|sq

¯2


.

Learning procedure: θt`1 « θt ` η arg min}g}2ďG Lpg; θt, dπθtq be-

cause we have no access to the true value of L.

Fisher information matrix: Let v be any visitation distribution,

Σθ
v :“

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„vm,H´h

”

∇θ ln πθpa|sq p∇θ ln πθpa|sqq
J

ı

.

Let g‹
t P arg min}g}2ďG Lpg; θt, dtq denote the true minimizer. Define:

(Excess risk) εstat :“ maxt ErLpgt; θt, dtq ´ Lpg‹
t ; θt, dtqs;

(Transfer error) εbias :“ maxt ErLpg‹
t ; θt, d‹qs;

(Relative condition number) κ :“ maxt E

«

supxPRd
xJΣθt

d‹x

xJΣtx

ff

.

Theorem 1: Assume }φps, aq}2 ď B. NPG for LMDP satisfies:

E
„

min
0ďtďT

V ‹,λ
´ V t,λ



ď
λp1 ´ ηλqT `1Φpπ0q

1 ´ p1 ´ ηλqT `1 ` η
B2G2

2
`

a

Hεbias `
a

Hκεstat,

where Φpπ0q is only relevant to the initialization.

Remark 1:

First result of sample-based, regularized NPG on LMDP.

Fix λ ą 0 ñ linear convergence, matching discounted infinite horizon

MDP; λ Ñ 0 ñ Op1{pηT q ` ηq ñ Op1{
?

T q convergence.

εstat can be reduced using a larger batch size N , εstat “ rOp1{
?

Nq.

If some dt (especially the initialization d0) is far away from d‹, κ may be

extremely large. Initialization with a small κ is of great help.

Result 2: Curriculum Learning for Online CO

Concept of CL: Learn to solve problems from easier ones to harder ones.

Example: For the classical Secretary Problem with 100 candidates, use

curricula of classical Secretary Problems with 10, 20, . . . , 90 candidates.

We found this multi-step CL unnecessary!

Why? From Remark 1, a pre-trained model reduces κ.

Learning from a different distribution is also possibly helpful!

Theoretical result for the Secretary Problem:

Suppose for each candidate i, it has probability Pi to be the so-far

best. For classical SP, Pi “ 1{i.

Optimal policy is always a p-threshold policy: accept if and only if

i{n ą p and is so-far best. For classical SP, p “ 1{e.

Theorem 2: For the Secretary Problem, assume the optimal policy is

a p-threshold policy and CL returns a q-threshold policy as initialization:

κCL “ Θ

˜#

śtnpu

j“tnqu`1
1

1´Pj
, q ď p,

1, q ą p,

¸

,

κnaïve “ Θ

¨

˝2tnpu max

$

&

%

1, max
iětnpu`2

i´1
ź

j“tnpu`1
2p1 ´ Pjq

,

.

-

˛

‚ .

Classical case: q ě 1{n ñ κCL “ Opnq while κnaïve “ Ωp2nq.

Pi ď 1{2 case: κCL ď 2tnpu´tnqu while κnaïve ě 2tnpu.

Failure case: If q ă 1 ´ 1{n and Pj ą 1 ´ 2´ n
n´tnqu´1 for any

tnqu ` 1 ď j ď n ´ 1, then κCL ą 2n ą κnaïve. (See paper.)
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