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Motivation & Goal

= ML is good at Combinatorial Optimization (CO) problems — Is (any
part of) this success explainable?

= Online CO matches the nature of RL — Sequential decision-making

= Theoretical understanding of RL techniques — Curriculum Learning —
on online CO

Example 1. Secretary Problem

Setting:

= Hire one secretary among n candidates, each with different score.
= Arrive sequentially, but the order is unknown.
= Once reject someone, cannot revoke; Once hire someone, ends.

= Maximize the probability of hiring the candidate with the highest
score.

Abstraction:

= A distribution over all n! permutations (ordering of the candidates).

= The observation of the agent can only be “whether the i-th candidate
is the so-far best”, so it cannot distinguish between each permutation.

A policy working averagely well on the instance distribution?

Example 2: Online Knapsack

= n items arrive sequentially, value v; and size s; revealed upon arrival.

= Once reject something, cannot revoke; To pick something, requires
total size < B.

= Maximize total value of picked items.
= Distribution of instances: each (v;, s;) ~ F, x Fsi.i.d.

Formulation: Latent MDP

= A distribution {wq,...,w;;} over MDPs M = {M1,..., My}
= Shared state set S, action set A, horizon H.
= Possibly distinct initial state distribution v, transition P, reward r,,,.

= Value of policy 7, V7, is defined as the w-weighted average on those
of individual MDPs.
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Function approximation loss: Let v be any visitation distribution,
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Learning procedure:} 6,1 ~ 6; + nargmin, . L(g; 0, d"%) be-

cause we have no access to the true value of L.

Fisher information matrix: Let v be any visitation distribution,
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Let g; € argminy . L(g; 6+, d") denote the true minimizer. Define:

= (Excess risk) estat := max; E[L(gy; 0t, d*) — L(g;; 0¢, d")];
= (Transfer error) ep;ys := maxy E[L(g7; 0¢, d*)];
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Assume |¢(s,a)lls < B. NPG for LMDP satisfies:
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where & () is only relevant to the initialization.

= First result of sample-based, regularized NPG on LMDP.

= Fix A\ > 0 = linear convergence, matching discounted infinite horizon
MDP; A — 0 = O(1/(nT) + 1) = O(1/v/T) convergence.

" estat CaN be reduced using a larger batch size N, egtat = O(1/v/N).

= If some d; (especially the initialization d)) is far away from d*, x may be
extremely large. Initialization with a small « is of great help.

5 + A/ Hebias + \/H/‘fstata

Concept of CL: Learn to solve problems from easier ones to harder ones.

Example: For the classical Secretary Problem with 100 candidates, use
curricula of classical Secretary Problems with 10, 20, . . ., 90 candidates.

We found this multi-step CL unnecessary!

Why? From Remark 1, a pre-trained model reduces &.
Learning from a different distribution is also possibly helpful!

Theoretical result for the Secretary Problem:

= Suppose for each candidate i, it has probability P; to be the so-far
best. For classical SP, P, = 1/i.

= Optimal policy is always a p-threshold policy: accept if and only if
i/n > p and is so-far best. For classical SP, p = 1/e.

For the Secretary Problem, assume the optimal policy is
a p-threshold policy and CL returns a g-threshold policy as initialization:
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= Classical case: ¢ > 1/n = k¢ = O(n) while kn5ve = ©2(27).
= P, < 1/2case: k¢ < olmpl=1nal while Knaive = olnpl

n

* Failure case: If ¢ <1 —1/nand P; > 1 —2 "Il for any
Ing| +1 <7 <n-—1,then ke > 2" > Kpaive. (S€€ paper.)
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