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Environment

Observation
You are in the

middle of a room.
You see a cabinet 18,

a cabinet 3, a ...

Possible Actions

1. Close microwave
2. Put tomato in

microwave
3. Go to cabinet

...

Reflect
Agent

Reflection
Taking the tomato to the
microwave is correct.
Next step is to place the
tomato ...

Memory
Task: Cook Tomato
Act 0: Go to fridge
Obs 0: It is closed

...
Act 4: Open microwave
Obs 4: You see a mug ...

Database

Policy
Agent

Action: 2

1. SFT

1. SFT

[ Reward: +1 ] 2. Online RLFT

Figure 1: Reflect-RL Pipeline. Solid lines represent the forward pass for both data generation and inference.
Agents (in circular nodes) are language models capable of generating reflections and making decisions. Red
dashed lines represent the loss and gradient calculation during the training periods: the reflection agent is trained
with SFT, while the policy agent is trained first with SFT and then with online RLFT. Detailed illustrations for
each stage can be found in Appendix B.

datasets.
Some recent studies have incorporated RL to align

LMs with human preference and to prompt LM for
problem-solving (see Table 1 for details). Szot et al.
(2023) and Tan et al. (2024) have started contemporary
explorations to integrate LMs within interactive RL en-
vironments, but these pioneering studies have not fully
utilized the LMs’ reasoning capabilities. Motivated by
the strength of RL and expansiveness of LLMs, our
work aims to fine-tune smaller, faster, and more se-
cure locally-operated LMs that are capable of decision-
making and adaptation through reflection, which are
essential for domain-specific interactive tasks.

1.2 Contributions
In this work, we introduce Reflect-RL, a novel ap-
proach to dynamically improve LMs with online RL
(Figure 1), applied with Markov decision processes
(MDPs) for multi-step decision making. Most of the
previous RL-LM works can be categorized into three
classes (Table 1): ¨ treating token-generation as RL,
rather than considering embodied tasks, games, or in-
teractive decision making within environments; ≠ us-
ing LMs as agents to augment policy generation with
additional textual information, without directly learn-
ing from the environment (gradient-free); Æ engaging
primarily with single-step bandits rather than multi-
step MDPs. Our method seeks to improve multi-step
decision making in textual environments by integrating
techniques from RL and LMs, enabling LMs to adapt
more efficiently to complex environments. We summa-

rize our key techniques below.

Key Techniques:
‚ Reflection (Section 4.1.3). We distill reflection abil-
ities for our domain-specific environment from GPT-
4 (OpenAI, 2023) through supervised learning. The
distilled small LM is frozen and deployed as a re-
flection model (player) to assist the trainable policy
model (player) in decision-making. Reflection accel-
erates training convergence and improves test perfor-
mance.
‚ Negative example generation (Section 4.2). The re-
flection data gathered from GPT-4 is unbalanced, with
the majority consisting of positive (near-optimal) deci-
sions. To balance the dataset, we generate negative ex-
amples by perturbing the GPT-4 trajectories and opti-
mal trajectories. Negative examples enhance the qual-
ity of reflection, ultimately leading to better success
rates in the benchmarks.
‚ Single-prompt action enumeration (Section 4.3).
We incorporate all possible valid actions into a single
prompt, allowing the LM to select the appropriate op-
tion using only one token. This approach improves
upon the normalization techniques in previous works
to generate valid actions and also reduces time com-
plexity.
‚ Task-specific curriculum learning (Section 4.4).
The core challenges of RL include planning for a long
horizon and sparse reward signals. Vanilla policy opti-
mization methods often fail to obtain sufficient useful
trajectories efficiently. We incorporate the idea of cur-
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Pipeline

Motivation

Given a repository
• Code
• Document
• Database files
• ……

• What is the fallback method for X if
there is no Y?
• Document retrieval

• Draw a map colored by employee 
salary.
• Coding, database query

Privacy
• Proprietary data
• Local model

Cost
• Smaller model 
• Shorter prompt
• Faster response

Challenges Abstraction
Autonomous exploration in a file system given 
natural language queries
• Locate, modify and execute the correct files

Fine-tune a local, small language model
• Privacy, cost

Contextual reinforcement learning
• Find shortest path given context (query)

Model AutoExplore DangerousTaxi
ALFWorldDepth 1 Depth 2 Pickup `Dropoff‹

Open Source
Mistral 7B 34% 3% 7% 0% 0%
Llama2 7B-chat 2% 1% 3% 0% 0%
Orca-2 7B 6% 1% 1% 0% 0%

SFT Only GPT-2 XL 1.56B 4% 9% 7% 0% 0%

RLFT Only GPT-2 XL 1.56B 12% 3% 2% 0% 0%

SFT`RLFT (w/o reflection) GPT-2 XL 1.56B 20% 4% 6% 0% 66%

SFT`RLFT (w/o negative) GPT-2 XL 1.56B 33% 12% - - -
Reflect-RL (Ours) GPT-2 XL 1.56B 36% 17% 58% 29% 74%

Table 2: Testing performance (average success rate) of open source models (Jiang et al., 2023; Touvron et al.,
2023; Mitra et al., 2023), GPT-2 XL fine-tuned with baselines, and with Reflect-RL. ReAct and memory mech-
anism, as shown in Figure 1, have been incorporated to improve performance. For conciseness, we have not
performed prompt optimization for the open-source models, and their performance could potentially be improved
with different prompting techniques in the future. Explanation for baselines: “SFT`RL (w/o reflection)” means
the policy model is the only model involved, and the reflection field is removed from SFT data. “SFT`RL (w/o
negative)” means there are no negative examples in SFT data, so both the reflection model and the policy model
are trained on expert demonstrations. We only ran this ablation on AutoExplore. Explanation for tasks: For
AutoExplore, we tested on 44 user queries, each with 10 runs. “Depth i” includes the tasks with target file depth
exactly i. For DangerousTaxi, we ran on 100 random maps. “Pickup” computes the success rate of picking up
the passenger, and “`Dropoff” computes the overall success rate. For ALFWorld, we tested on 4 tasks, each with
25 runs.

system safely, with the ultimate goal of answering
a natural language question specified by users. The
labeled dataset is composed of several real-world and
synthesized repositories, with over 2500 trajectories.
See Appendix C for more details.

This exploration task draws inspiration from Re-
trieval Augmented Generation (RAG) (Lewis et al.,
2020) and InterCode (Yang et al., 2023). RAG’s per-
formance is linearly dependent on the amount of con-
tent (e.g., number of files) in the search space, present-
ing scalability challenges. In contrast, InterCode uti-
lizes a tree-structured search methodology, requiring
merely logarithmic space and time. This approach is
notably beneficial for expansive search spaces or envi-
ronments prone to frequent updates (e.g., Docker envi-
ronments, customized systems). By integrating online
RL training into InterCode, our proof-of-concept en-
vironment aims to create code interpreter designed for
large code repositories.

During interaction with AutoExploreCopilot,
each step the agent receives ´1 reward as the cost of
time. After 15 steps or the agent explicitly terminates,
if the correct file is identified, a `15 reward is given;
otherwise a ´15 reward is given.

DangerousTaxi. We extended the OpenAI Gym’s
Taxi environment to introduce a higher level of chal-
lenge, thereby creating the “DangerousTaxi ” en-
vironment. This game concludes prematurely if the

player commits any invalid action, such as colliding
with a wall, or incorrectly picking up or dropping off
passengers at unauthorized locations. This modifica-
tion crucially elevates the task’s difficulty by eliminat-
ing the opportunity for the model to correct its mis-
takes after a wrong decision—a common allowance in
the standard environment.

We applied curriculum learning to DangerousTaxi.
In the designed pickup curriculum, we assign a pos-
itive reward 20 and terminate the environment after
the driver successfully pickup the passenger. In the
dropoff stage, the pickup reward is retained, but the
driver needs to further dropoff the passenger at desti-
nation to receive the full reward.

ALFWorld. Our study leverages ALFWorld (Côté
et al., 2019; Shridhar et al., 2020), a multi-turn plat-
form tailored for simulating household tasks by con-
verting the graphical representation of a house into de-
scriptive language. A robot in is required to complete
certain tasks based on the descriptions. This bench-
mark has gained recognition to evaluate LLM agents,
with studies like Arabzadeh et al. (2024) demonstrat-
ing its efficacy. Our focus on the tomato picking task
stems from its optimal mix of simplicity and represen-
tativeness.
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We focus on file locating in this work

Markov Decision Processes
• State 𝑠 = 𝑠!, 𝑠", … , 𝑠# ∈ 𝒮
• Action 𝑎 = 𝑎!, 𝑎", … , 𝑎$ ∈ 𝒜(𝑠)
• Deterministic reward 𝑟 𝑠, 𝑎 ∈ [−1,1]
• Deterministic transition 𝒯 𝑠, 𝑎 ∈ 𝒮
• Context (task) distribution 𝜇
• SFT dataset 𝒟 for instruction following

Tokens

Reflection Agent
• Get reflection 𝑅(𝑠) from GPT-4 into 𝒟 
• SFT a local reflect agent 4𝑅%
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Action Generation
• Enumerate function
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• Output only choice number
• Reduce lm_head size
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• RLFT using REINFORCE

Negative Data
• Reflection agent unable to correct 

errors using only optimal data in 𝒟
• Perturb each action on an optimal 

trajectory and tell GPT-4 it is sub-
optimal to get negative reflection data
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Curriculum Learning
• Gradually increase depth for 

AutoExplore
• Extra pickup reward for Taxi

Benchmarks

AutoExplore

OpenAI Gym’s Taxi in text
• More challenges
• Invalid pickup / dropoff kills the game
• Bumping into wall kills the game

+---------+
|T: | : :P|
| : | : : |
| : : : : |
| | : | : |
|D| : | : |
+---------+

ALFWorld
• Navigate in a text environment to 

complete a given goal

Results

1.56B model 
with Reflect-RL 

V.S.
7B open-source 
models
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Figure 2: Training success rates of different training
methods with GPT-2 XL in the pickup curriculum of
the DangerousTaxi environment. We compared dif-
ferent RL methods for 5000 iterations during RLFT.
SFT with 5000 iterations would only achieve 7% suc-
cess rate, hence only RL methods are shown.

6 Experimental Results

To verify our approach, we apply Reflect-RL on
GPT-2 XL (Radford et al., 2019). Table 2 presents a
comprehensive evaluation of various models’ perfor-
mance across different environments. LMs still face
challenges in multi-step decision-making in interactive
environments, and Reflect-RL has significantly im-
proved their decision-making capabilities in complex
environments. This method not only utilizes the in-
herent strengths of LMs in reflection but also closely
aligns with the multi-step decision-making process in-
trinsic to RL. Our findings highlight the potential of
merging advanced prompting techniques with LMs to
address complex RL tasks, establishing a new bench-
mark for future research in this field.

Open source models and commercial GPT models.
We evaluated three open-source 7B models with nec-
essary prompt engineering such as ReAct and mem-
ory mechanism included. These models all perform
poorly on the three tasks, except for Mistral 7B on
AutoExplore depth 1. We also examined GPT-3.5-
turbo and GPT-4 (version 1106) through Azure Ope-
nAI API. GPT-4 can achieve a success rate of 71%
in AutoExplore depth 1, 81% in depth 2, and 84%
in ALFWorld; meanwhile, GPT-3.5-turbo achieves a
success rate of 31% in AutoExplore depth 1, 8% in
depth 2, and 6% in ALFWorld. During the evaluation,
we noticed potential data contamination of these two
models: GPT-4 can sometimes identify near-optimal
actions without extensive exploration of the space. In
the DangerousTaxi environment, the success rates of
the dropoff curriculum for GPT-4 and GPT-3.5-turbo
are both 0%. Even though GPT-4 has 70% chance ex-
ecuting a valid action in each step, it is prone to fail-
ure upon committing minor errors along the long nav-
igation path during multi-turn interactions. These ob-
servations suggest that even powerful LLMs may still
need online RL training for multi-turn interactions.

SFT is not enough. Supervised fine-tuning (SFT)
has been widely used offline to improve LMs’ perfor-
mance on specific tasks. However, our results (Table 2)
indicate that SFT alone is not sufficient for complex
RL tasks requiring multi-step decision-making. While
SFT enhances task-specific knowledge, it fails to solve
problems requiring deep reasoning, planning, and re-
flection.

Reflection helps learning. Incorporating reflective
processes into LLMs significantly enhances decision-
making and learning from past actions. Our compara-
tive analysis between models with and without reflec-
tion capabilities highlights the importance of reflec-
tion for advanced understanding and adaptability in RL
tasks. As shown in Figure 2, the curves representing
online RL without reflection are constantly below the
curve of Reflect-RL. Figure 4 shows a similar result.

Reflecting from mistakes is beneficial. The philos-
ophy of “learning from mistakes” plays a meaningful
role in Reflect-RL. Without negative reflection sam-
ples, the model’s performance would be worse (in ab-
solute difference) than the model trained with both pos-
itive and negative data. For AutoExplore, the test ac-
curacies without negative examples are 33% and 12%
for each curriculum, compared with 36% and 17% with
negative examples. As shown in Figure 3, the solid
curve represents the integration of negative examples
into the SFT dataset, and we observed a faster conver-
gence during RLFT.
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Figure 3: Training success rate with and without neg-
ative examples in the AutoExplore setting, each as-
sessed in a single run. When negative examples are ex-
cluded, the training process exhibits decreased speed
and lacks smoothness.

Curriculum learning (CL) accelerates learning.
As shown in the top two curves in Figure 4, CL ac-
celerates the learning curve for complex RL tasks by
structuring the training process with challenging tasks.
To ensure a fair evaluation, both learning approaches
(Reflect-RL with and without CL) are pre-trained
with the same reflection dataset during the SFT phase.
The curriculum learning approach begins with an ini-
tial RL training phase focused on the pickup curricu-
lum, followed by the dropoff curriculum. Without cur-
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Ablation on reflection:
Success rate of Taxi pickup
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Figure 2: Training success rates of different training
methods with GPT-2 XL in the pickup curriculum of
the DangerousTaxi environment. We compared dif-
ferent RL methods for 5000 iterations during RLFT.
SFT with 5000 iterations would only achieve 7% suc-
cess rate, hence only RL methods are shown.

6 Experimental Results

To verify our approach, we apply Reflect-RL on
GPT-2 XL (Radford et al., 2019). Table 2 presents a
comprehensive evaluation of various models’ perfor-
mance across different environments. LMs still face
challenges in multi-step decision-making in interactive
environments, and Reflect-RL has significantly im-
proved their decision-making capabilities in complex
environments. This method not only utilizes the in-
herent strengths of LMs in reflection but also closely
aligns with the multi-step decision-making process in-
trinsic to RL. Our findings highlight the potential of
merging advanced prompting techniques with LMs to
address complex RL tasks, establishing a new bench-
mark for future research in this field.

Open source models and commercial GPT models.
We evaluated three open-source 7B models with nec-
essary prompt engineering such as ReAct and mem-
ory mechanism included. These models all perform
poorly on the three tasks, except for Mistral 7B on
AutoExplore depth 1. We also examined GPT-3.5-
turbo and GPT-4 (version 1106) through Azure Ope-
nAI API. GPT-4 can achieve a success rate of 71%
in AutoExplore depth 1, 81% in depth 2, and 84%
in ALFWorld; meanwhile, GPT-3.5-turbo achieves a
success rate of 31% in AutoExplore depth 1, 8% in
depth 2, and 6% in ALFWorld. During the evaluation,
we noticed potential data contamination of these two
models: GPT-4 can sometimes identify near-optimal
actions without extensive exploration of the space. In
the DangerousTaxi environment, the success rates of
the dropoff curriculum for GPT-4 and GPT-3.5-turbo
are both 0%. Even though GPT-4 has 70% chance ex-
ecuting a valid action in each step, it is prone to fail-
ure upon committing minor errors along the long nav-
igation path during multi-turn interactions. These ob-
servations suggest that even powerful LLMs may still
need online RL training for multi-turn interactions.

SFT is not enough. Supervised fine-tuning (SFT)
has been widely used offline to improve LMs’ perfor-
mance on specific tasks. However, our results (Table 2)
indicate that SFT alone is not sufficient for complex
RL tasks requiring multi-step decision-making. While
SFT enhances task-specific knowledge, it fails to solve
problems requiring deep reasoning, planning, and re-
flection.

Reflection helps learning. Incorporating reflective
processes into LLMs significantly enhances decision-
making and learning from past actions. Our compara-
tive analysis between models with and without reflec-
tion capabilities highlights the importance of reflec-
tion for advanced understanding and adaptability in RL
tasks. As shown in Figure 2, the curves representing
online RL without reflection are constantly below the
curve of Reflect-RL. Figure 4 shows a similar result.

Reflecting from mistakes is beneficial. The philos-
ophy of “learning from mistakes” plays a meaningful
role in Reflect-RL. Without negative reflection sam-
ples, the model’s performance would be worse (in ab-
solute difference) than the model trained with both pos-
itive and negative data. For AutoExplore, the test ac-
curacies without negative examples are 33% and 12%
for each curriculum, compared with 36% and 17% with
negative examples. As shown in Figure 3, the solid
curve represents the integration of negative examples
into the SFT dataset, and we observed a faster conver-
gence during RLFT.
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Figure 3: Training success rate with and without neg-
ative examples in the AutoExplore setting, each as-
sessed in a single run. When negative examples are ex-
cluded, the training process exhibits decreased speed
and lacks smoothness.

Curriculum learning (CL) accelerates learning.
As shown in the top two curves in Figure 4, CL ac-
celerates the learning curve for complex RL tasks by
structuring the training process with challenging tasks.
To ensure a fair evaluation, both learning approaches
(Reflect-RL with and without CL) are pre-trained
with the same reflection dataset during the SFT phase.
The curriculum learning approach begins with an ini-
tial RL training phase focused on the pickup curricu-
lum, followed by the dropoff curriculum. Without cur-
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riculum learning, the model is trained directly using the
dropoff curriculum, resulting in slightly inferior per-
formance.
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Figure 4: Comparison of training success rates in the
drop-off curriculum in the DangerousTaxi environ-
ment. The top two curves represent Reflect-RL;
“w/ CL” means the experiment incorporates curricu-
lum learning (CL) and is trained with the pickup cur-
riculum. The bottom two dashed curves represent on-
line RL without reflection. All single run.

Sensitivity of the policy model with respect to the
reflection model. For DangerousTaxi pickup sub-
task, using the same policy model after Reflect-RL,
we switch the reflection model to GPT-2 Small 0.12B
and Mistral 7B SFTed with the reflection data. The
results for GPT-2 Small 0.12B, GPT-2 XL 1.56B, and
Mistral 7B are 55%, 58% (as in Table 2), and 64%.
This phenomenon indicates that the policy model is not
extremely sensitive to the robustness/accuracy of the
reflection model as the policy model can easily adapt.
Additionally, using a more capable reflection model
can improve the performance.

7 Discussion and Conclusion
Risk, impact, and responsible AI. In this study, we
adhere to principles of Responsible AI by ensuring
transparency, efficiency, and security in both the train-
ing and evaluation stages. An exemplar of our commit-
ment is the development of AutoExploreSandbox,
designed to reduce the risk of security issues in the file
system. Recognizing the importance of ethical consid-
erations and the social impact of our work, we pledge
to engage in continuous evaluation of LMs’s perfor-
mance in multi-step environment.

Limitations. Our study, while comprehensive, ac-
knowledges certain limitations. Although ALFWorld
benchmark is multimodal, this study primarily focued
on the text representation, leaving the examination of
multimodal models and cross-attention encoding of
other modalities (such as images and audio) for fu-
ture work. Comparisons with commercial models is
discussed in Section 6, but the proprietary nature and
potential biases (e.g., unknown training data) limit a
fair comparison with open-source models. Standard-

ized benchmarks in the field are needed for further
evaluation. Lastly, the reflection data utilized in our
study is generated by GPT-4, which may not fully cap-
ture the distribution of real human data. This indicates
the importance of integrating more authentic human-
generated data in future evaluations.

Future direction. The primary goal of this study is
to create an efficient online RL pipeline for LMs to
perform multi-step problem solving. Building on this
foundation, future research directions may explore the
scalability of Reflect-RL to develop larger founda-
tion models, enabling them to adapt to previously un-
seen environments with out-of-domain generalization
capabilities. The two-player design in our framework
may naturally be extended to other multi-agent settings
where language models can show their strengths. An-
other future direction is to train the reflection model
in RLFT stage as we freeze it because of the interfer-
ence with the policy model (Appendix F.2), which will
improve the reasoning ability of language models for
decision-making tasks.
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