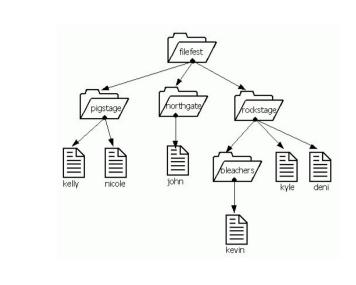
Reflect-RL: Two-Player Online RL Fine-Tuning for LMs

Runlong Zhou¹


Simon S. Du¹

Beibin Li²

¹University of Washington ²Microsoft Research, Redmond

Motivation

Given a repository

- Code
- Document
- Database files
- •

- What is the fallback method for X if there is no Y?
 - Document retrieval
- Draw a map colored by employee salary.
 - Coding, database query

Challenges

Privacy

- Proprietary data
- Local model

Cost

- Smaller model
- Shorter prompt
- Faster response

Abstraction

Autonomous exploration in a file system given natural language queries

• Locate, modify and execute the correct files

Fine-tune a local, small language model

Privacy, cost

Contextual reinforcement learning

Find shortest path given context (query)

Markov Decision Processes

- State $s = (s_1, s_2, ..., s_L) \in \mathcal{S}$ Tokens
- Action $a = (a_1, a_2, ..., a_K) \in \mathcal{A}(s)$
- Deterministic reward $r(s, a) \in [-1,1]$
- Deterministic transition $T(s, a) \in S$
- Context (task) distribution μ
- SFT dataset $\mathcal D$ for instruction following

Reflection Agent

- Get reflection R(s) from GPT-4 into \mathcal{D}
- SFT a local reflect agent \hat{R}_{ϕ}

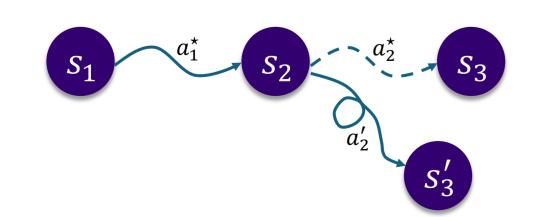
$$\mathcal{L}_{R}(\phi) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} -\log \hat{R}_{\phi}(R_{i,j}|s_{i}, R_{i,1:j-1})$$

• Freeze during RLFT

Action Generation

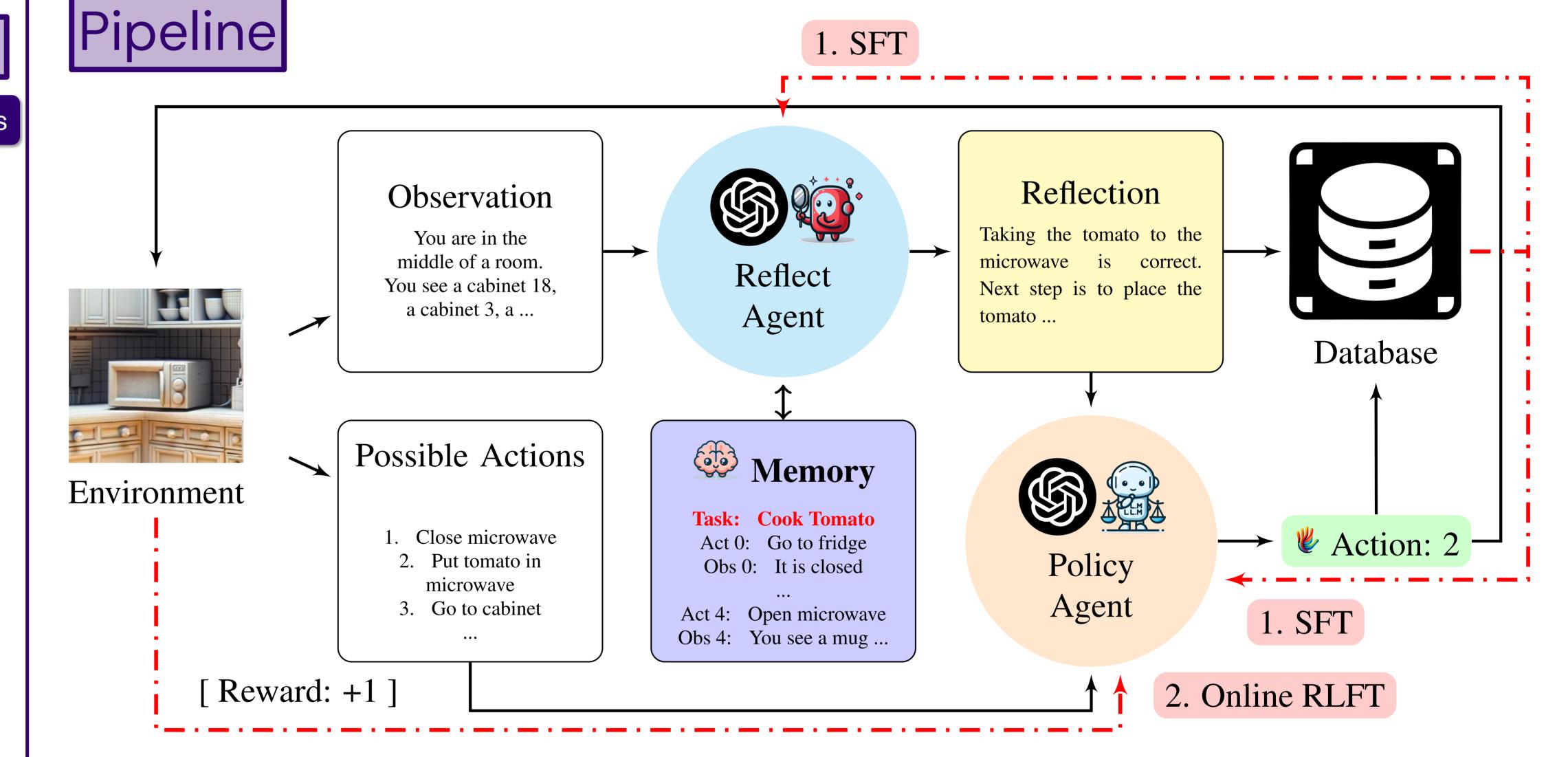
- Enumerate function
 - $\alpha(\mathcal{A}(s)) = (1, a_1; 2, a_2; \dots)$
- Output only choice numberReduce lm_head size
- Time complexity: $\Theta(|s|^2 + \sum_{a \in \mathcal{A}(s)} |a|^2)$
 - $|\mathcal{A}(s)|$ times faster than SayCan!

Policy Agent

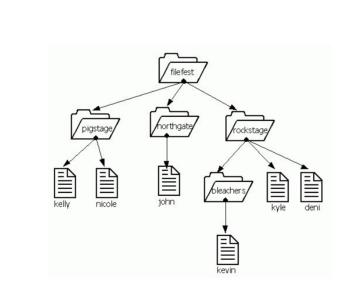

• SFT loss

$$\mathcal{L}_{P}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K_{i}} -\log \pi_{\theta}(a_{i,j}|s_{i}, R_{i}, \alpha_{i}, a_{i,1:j-1})$$

• RLFT using REINFORCE

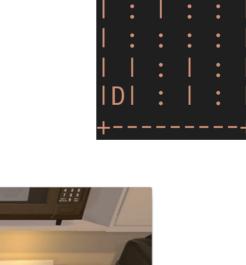

Negative Data

- Reflection agent unable to correct errors using only optimal data in \mathcal{D}
- **Perturb** each action on an optimal trajectory and tell GPT-4 it is suboptimal to get negative reflection data



Curriculum Learning

- Gradually increase depth for AutoExplore
- Extra pickup reward for Taxi



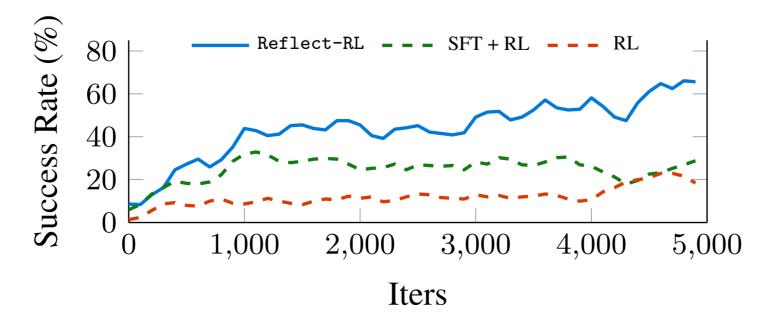
Benchmarks

AutoExplore

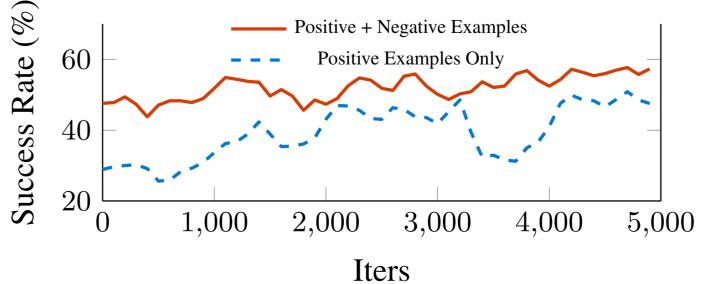
OpenAl Gym's **Taxi** in text

- More challenges
 - Invalid pickup / dropoff kills the game
 - Bumping into wall kills the game

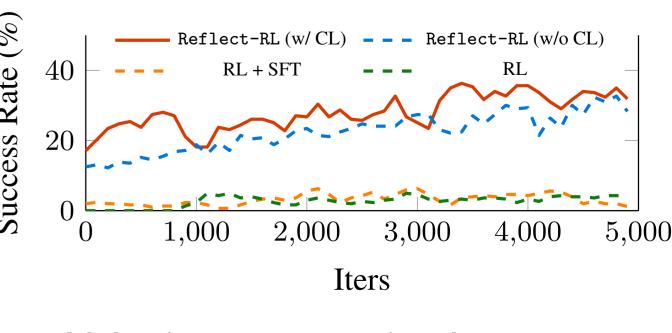
ALFWorld


 Navigate in a **text** environment to complete a given goal

Results


1.56B model with Reflect-RL V.S.

7B open-source models


		Model	AutoEx Depth 1	xplore Depth 2	Dange Pickup	rousTaxi +Dropoff*	ALFWorld
	Open Source	Mistral 7B	34%	3%	7%	0%	0%
		Llama2 7B-chat	2%	1%	3%	0%	0%
		Orca-2 7B	6%	1%	1%	0%	0%
	SFT Only	GPT-2 XL 1.56B	4%	9%	7%	0%	0%
	RLFT Only	GPT-2 XL 1.56B	12%	3%	2%	0%	0%
	SFT+RLFT (w/o reflection)	GPT-2 XL 1.56B	20%	4%	6%	0%	66%
	SFT+RLFT (w/o negative)	GPT-2 XL 1.56B	33%	12%	_	-	_
	Reflect-RL (Ours)	GPT-2 XL 1.56B	36%	17%	58%	29%	74%

Ablation on reflection:
Success rate of Taxi pickup

Ablation on negative data: Success rate of AutoExplore

Ablation on curriculum learning (and reflection):
Success rate of Taxi dropoff