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Preliminaries

Markov Decision Processes

S states

A actions

Planning horizon H

Reward function Rps, aq, such that for any possible trajectory, its total

reward in a single episode is upper-bounded by 1
Transition probability P ps1|s, aq

Initial state distribution νpsq

Maximum transition support Γ “ maxs,a }P p¨|s, aq}0

Latent MDPs

A distribution of M MDPs M “ tM1, . . . , MMu

Each with weight (probability) w1, . . . , wM

All MDPs share the same states, actions and horizon

But have their own reward function Rm, transition Pm and initial state

distribution νm

Policy and alpha vectors

π : H Ñ A, where H is the set of all histories

Alpha vectors (generalization of value and Q-functions)

απ
mphq :“ Eπ,Mm
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Value function V π “
ř

m,s wmνmpsqαπ
mpsq

Episodic reinforcement learning with context in hindsight

K episodes, with policies π1, π2, . . . , πk

Context in hindsight: At the beginning, sample m „ twu, but only tell

the agent m when the episode ends

Performance measure

RegretpKq :“
K
ÿ

k“1
pV ‹

´ V πk
q.
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Encoding phase

Guessing phase

MDP 1 MDP 2

Motivation

A problem harder than MDPs while easier than POMDPs

LMDPs are collections of MDPs with a hidden context

LMDPs are POMDPs with invariant unobservables throughout an

episode: s “ pm, oq Ñ s1 “ pm, o1q

RL environments have different randomness:

We desire a regret that:

Better than a previous work of rOp
?

MHS2AKq

Reduce to better guarantee if the LMDP is special, e.g., a

deterministic MDP

Maximum Policy-Value Variance

For deterministic policy π, define

Varπ :“ Vpw ˝ ν, απ
¨ p¨qq ` Eπ
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and Var‹ :“ maxπPΠ Varπ.

Discussion on Variances

Under Condition 1 , we have VarΣτ ď rOp1q with high probability if τ

is sampled by any policy and Var‹ ď 1. Without Condition 1 ,

VarΣτ ď rOpH2q and Var‹ ď H2.

For deterministic MDPs, VarΣτ “ Var‹ “ 0.
Var‹ “ 0 ùñ VarΣτ “ 0, while reverse is not true.

Regret Upper Bound

We propose an algorithmic framework for solving LMDPs, which takes

planning oracles as plug-in solvers. With two oracles we design (Bern-

stein confidence set and Monotonic Value Propagation for LMDP), we

can guarantee a regret upper bound of

RegretpKq ď rOp
?

Var‹MΓSAK ` MS2Aq,

where rO hides polylog factors.

Remark:

Var‹ ď 1 and Γ ď S, so the worst case regret is rOp
?

MS2AK ` MS2Aq,

which is the first horizon-free bound for LMDPs

If we view deterministic MDP as a special LMDP, we have Var‹ “ 0
and M “ 1, regret is rOpS2Aq, which is a constant

Regret Lower Bound

For any variance level 0 ă V ď Op1q and any algorithm π, there exists an
LMDP Mπ such that:

Var‹ “ ΘpVq;

For K ě rΩpM2 ` MSAq, its expected regret in Mπ after K episodes

satisfies
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High level idea: See the illustration in the top figure. We transform

context in hindsight into context being told beforehand, while not affect-

ing the optimal value function. Use a small portion of states to encode

the context, then the optimal policy can extract information from them.
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