The Crucial Role of Samplers in Online Direct Preference Optimization

Ruizhe Shi* Runlong Zhou* Simon S. Du

* indicates equal contribution.

Multi-armed bandits (MABs)

- Fixed state (prompt)
- Arm (response) space \mathcal{Y}
- Reward function $r(y) \in [0,1]$

Preference-based RL

Results can be easily

adapted to contextual

bandits, so we focus

on MABs only

- After choosing a pair (y_1, y_2) , we observe a sample $p \sim \text{Bernoulli}(p^*(y_1 > y_2))$ (Preference model)
- Bradley-Terry model:

 $p^{*}(y_{1} > y_{2}) = \sigma(r(y_{1}) - r(y_{2})) = \frac{e^{r(y_{1})}}{e^{r(y_{1})} + e^{r(y_{2})}}$

Tabular softmax parameterization

A tabular softmax policy π_{θ} for MABs satisfies

$$\pi_{\theta}(y) = \frac{e^{\theta y}}{\sum_{y'} e^{\theta y'}}$$

DPO loss:

$$\mathcal{L}_{\pi}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log \sigma \left(\beta \log \frac{\pi_{\theta} \left(y_{w}^{(i)} \right)}{\pi_{\text{ref}} \left(y_{w}^{(i)} \right)} - \log \frac{\pi^{\star} \left(y_{l}^{(i)} \right)}{\pi_{\text{ref}} \left(y_{l}^{(i)} \right)} \right)$$

Closed-form solution:

$$\pi^{\star}(y) = \frac{1}{Z} \pi_{\text{ref}}(y) e^{r(y)/\beta}$$

Question we study:

How fast can DPO w. different sampling strategies converge to the closed-form solution?

For sampling, here we mean how we sample (y_1, y_2) .

 π^{s1} for y_1 and π^{s2} for y_2 . Joint probability

$$\pi^{\mathrm{s}}(y,y') := \mathrm{sg}\left(\pi^{\mathrm{s}1}(y)\pi^{\mathrm{s}2}(y') + \pi^{\mathrm{s}1}(y')\pi^{\mathrm{s}2}(y)\right)$$
 Stop gradient

Exact DPO loss and policy update:

$$\mathcal{L}_{\text{DPO}}(\theta) := -\sum_{y,y' \in \mathcal{Y}} \pi^{\mathsf{s}}(y,y') p^{\star}(y > y') \log \sigma \left(\beta \log \frac{\pi_{\theta}(y)\pi_{\text{ref}}(y')}{\pi_{\text{ref}}(y)\pi_{\theta}(y')}\right)$$

$$\theta^{(t+1)} = \theta^{(t)} - \eta \alpha(\pi^{\mathsf{s}1}, \pi^{\mathsf{s}2}) \nabla_{\theta} \mathcal{L}_{\text{DPO}}(\theta^{(t)})$$

Mixture of samplers: Sampling coefficients $\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} \left(\alpha_1 \mathcal{L}_1(\theta^{(t)}) + \alpha_2 \mathcal{L}_2(\theta^{(t)}) \right)$

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} \left(\alpha_1 \mathcal{L}_1(\theta^{(t)}) + \alpha_2 \mathcal{L}_2(\theta^{(t)}) \right)$$

Convergence quantities:

$$\Delta(y, y'; \theta) := \sigma(r(y) - r(y')) - \sigma\left(\beta \log \frac{\pi_{\theta}(y)\pi_{\mathsf{ref}}(y')}{\pi_{\mathsf{ref}}(y)\pi_{\theta}(y')}\right) ,$$

$$\delta(y, y'; \theta) := r(y) - r(y') - \beta \log \frac{\pi_{\theta}(y)\pi_{\mathsf{ref}}(y')}{\pi_{\mathsf{ref}}(y)\pi_{\theta}(y')} .$$

How fast can $\delta(y, y'; \theta^{(t)})$ converge to 0?

$$\delta^{(t+1)} = \delta^{(t)}$$

$$-\eta \beta \alpha(\pi^{\mathsf{s1}}, \pi^{\mathsf{s2}}) \sum_{y''} \left(\pi^{\mathsf{s}}(y, y'') \Delta(y, y''; \theta^{(t)}) - \pi^{\mathsf{s}}(y', y'') \Delta(y', y''; \theta^{(t)}) \right)$$

Taylor expansion: $\Delta \rightarrow \delta$

Uniform Sampler (Unif)

$$\pi^{\mathsf{s}1}(\cdot) = \pi^{\mathsf{s}2}(\cdot) = \mathsf{Uniform}(\mathcal{Y})$$

Reward-guided Sampler (Mix-R)

$$\textcircled{1} \left\{ \begin{array}{l} \pi^{\mathrm{s1}}(\cdot) = \mathsf{Uniform}(\mathcal{Y}) \;, \\ \pi^{\mathrm{s2}}(\cdot) = \mathsf{Uniform}(\mathcal{Y}) \;, \end{array} \right. \textcircled{2} \left\{ \begin{array}{l} \pi^{\mathrm{s1}}(\cdot) \propto \mathsf{Uniform}(\mathcal{Y}) \cdot \exp(r(\cdot)) \;, \\ \pi^{\mathrm{s2}}(\cdot) \propto \mathsf{Uniform}(\mathcal{Y}) \cdot \exp(-r(\cdot)) \;, \end{array} \right.$$

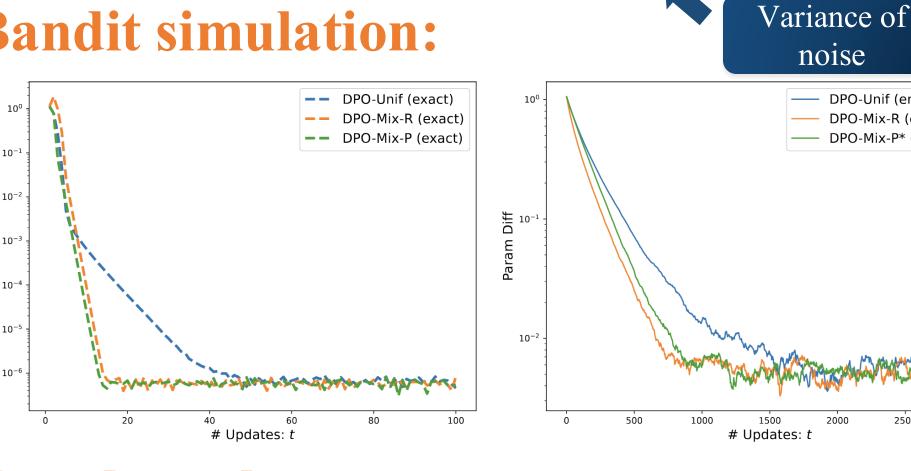
Policy-guided Sampler (Mix-P)

$$\textcircled{1} \left\{ \begin{array}{l} \pi^{\mathrm{s1}}(\cdot) = \mathsf{Uniform}(\mathcal{Y}) \;, \\ \pi^{\mathrm{s2}}(\cdot) = \mathsf{Uniform}(\mathcal{Y}) \;, \end{array} \right. \left\{ \begin{array}{l} \pi^{\mathrm{s1}}(\cdot) \propto \mathsf{Uniform}(\mathcal{Y}) \cdot (\pi(\cdot)/\pi_{\mathsf{ref}}(\cdot))^{\beta} \\ \pi^{\mathrm{s2}}(\cdot) \propto \mathsf{Uniform}(\mathcal{Y}) \cdot (\pi_{\mathsf{ref}}(\cdot)/\pi(\cdot))^{\beta} \end{array} \right.$$

Convergence rate:

	Unif	Mix-R	Mix-P
Exact	0.588^{T}	$0.5^{2^{T}-1}$	0.611^{2^T-1}
Empirical	unknown	linear to $O(\sigma)$	linear to $O(\sigma)$

Bandit simulation:



Benchmarks:

Safe-RLHF

Algorithm	Iters	Reward (train)	Win-rate (train)	Reward (test)	Win-rate (GPT4o-mini)
Vanilla DPO	2 3	$-1.438(\pm 0.092)$ $-1.238(\pm 0.085)$	$68.1(\pm 0.8)\%$ $71.3(\pm 1.1)\%$	$-1.391(\pm 0.076)$ $-1.242(\pm 0.045)$	71.5%
On-policy DPO	2 3	$-1.328(\pm 0.258)$ $-1.003(\pm 0.118)$	69.4(±3.1)% 74.2(±1.3)%	$-1.362(\pm 0.235)$ $-1.004(\pm 0.100)$	73.0%
Hybrid GSHF	2 3	$-1.349(\pm 0.295)$ $-1.007(\pm 0.149)$	$70.5(\pm 3.2)\%$ $75.2(\pm 0.9)\%$	$-1.335(\pm 0.302)$ $-0.946(\pm 0.138)$	- 81.0%
Ours	2 3	$-1.323(\pm 0.242)$ $-0.894(\pm 0.043)$	$69.8(\pm 2.6)\%$ 75.6 (± 0.3)%	$-1.295(\pm 0.226)$ $-0.923(\pm 0.086)$	- 82.5%

Iterative-Prompt

Algorithm	Iters	Reward (train)	Win-rate (train)	Reward (test)	Win-rate (GPT4o-mini)
Vanilla DPO	2 3	$1.460(\pm 0.035) \\ 2.146(\pm 0.108)$	$71.5(\pm 0.2)\%$ $79.6(\pm 1.0)\%$	$1.418(\pm 0.038) 2.166(\pm 0.042)$	- 76.5%
On-policy DPO	2 3	$2.135(\pm 0.029)$ $3.712(\pm 0.507)$	$78.8(\pm 0.5)\%$ $85.1(\pm 2.4)\%$	$2.132(\pm 0.023)$ $3.704(\pm 0.331)$	- 88.0%
Hybrid GSHF	2 3	$2.138(\pm 0.020)$ $2.481(\pm 0.088)$	$79.4(\pm 0.2)\%$ $81.7(\pm 0.8)\%$	$2.136(\pm 0.077)$ $2.497(\pm 0.052)$	80.0%
Ours	2 3	$2.060(\pm 0.030)$ 4.249 (± 0.365)	$78.2(\pm 0.2)\%$ 87.1 (± 3.0)%	$2.067(\pm 0.008)$ 4.248 (± 0.388)	- 89.5%

Check out our paper to see how to implement these regimes in practical DPO!