CASCADE Your Datasets for Cross-Mode Knowledge Retrieval of Language Models

Runlong Zhou¹ Yi Zhang²

¹University of Washington ²Meta

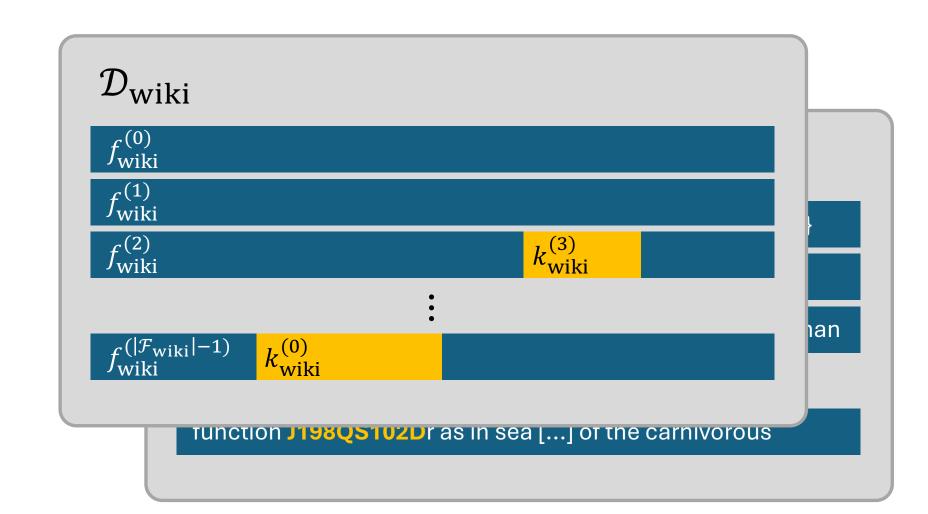
Quantitative Setup

Modes: Wikipedia and TinyStories

Knowledge: random token sequences

- Quantification: only token-by-token memorization, unlike rephraseable general knowledge → log probability as metric
- Exclusiveness: ensure these knowledge pieces neither appear in mode texts nor correlate with each other

We construct K=32 pieces of knowledge for each mode:


 $\mathcal{K}_{\mathsf{wiki}} = \{k_{\mathsf{wiki}}^{(0)}, k_{\mathsf{wiki}}^{(1)}, \dots, k_{\mathsf{wiki}}^{(K-1)}\}, \ \mathcal{K}_{\mathsf{ts}} = \{k_{\mathsf{ts}}^{(0)}, k_{\mathsf{ts}}^{(1)}, \dots, k_{\mathsf{ts}}^{(K-1)}\}.$ Length $\in [8, 512]$; disjoint at sequence level: $\mathcal{K}_{\mathsf{wiki}} \cap \mathcal{K}_{\mathsf{ts}} = \varnothing$.

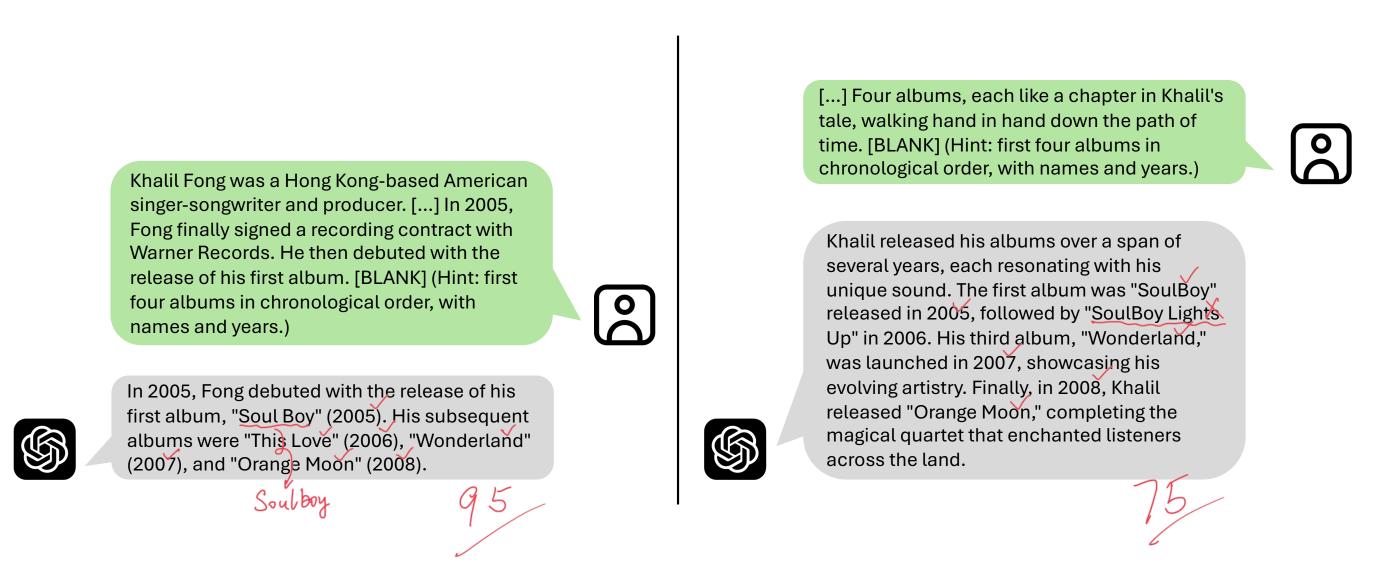
Queries: shortest prefixes as unique hints

- $\ell = \min l \text{ such that } |\{k[0:l] \mid k \in \mathcal{K}_{wiki} \cup \mathcal{K}_{ts}\}| = 2K.$
- The queries are defined as

$$Q_{\mathsf{wiki}} = \{q_{\mathsf{wiki}}^{(i)} := k_{\mathsf{wiki}}^{(i)}[0:\ell] \mid 0 \leqslant i < K\}, \quad \mathsf{similar for } \mathcal{Q}_{\mathsf{ts}}.$$

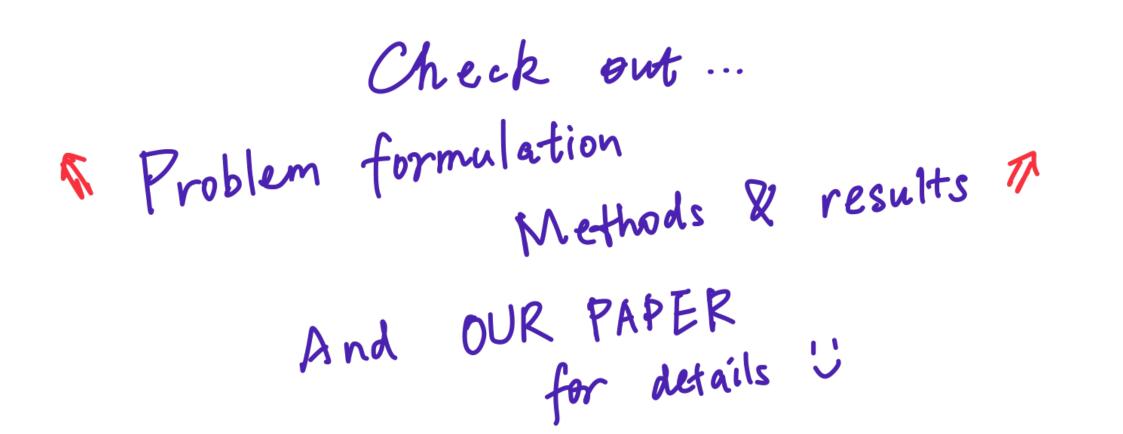
Training dataset

Evaluation

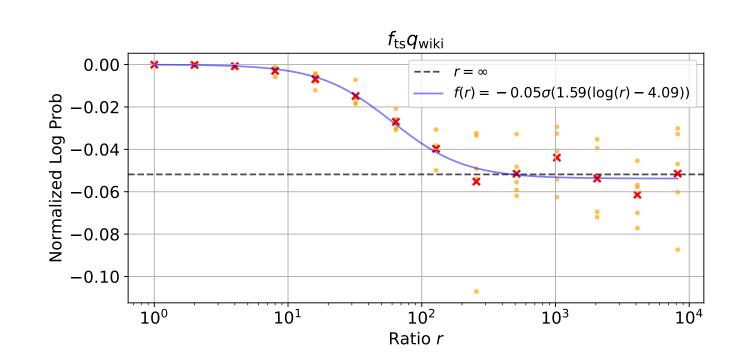

- Always put the query in the end of each sequence
- Normalized log probability:

$$\frac{1}{|k| - \ell} \sum_{i=\ell}^{|k|-1} \log \mathcal{M}_{\theta}(k[i] \mid f[:-|k|], k[:i]).$$

LLMs often fail to access knowledge learned in one mode when queried in another!

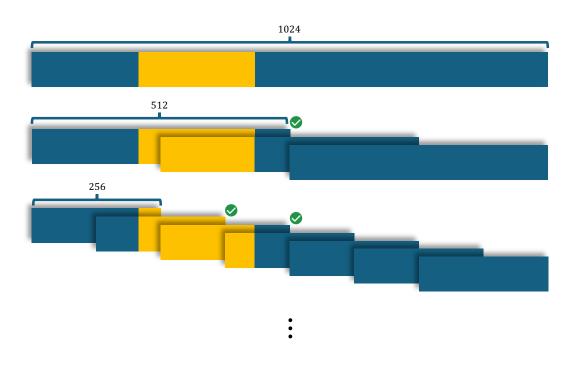

- **Knowledge:** Information that is crucial and should be handled with top priority: fact, logic, method, etc.
- Mode: Information that is less important than knowledge but shows a dense clustering: context around knowledge, style to present knowledge, source of knowledge, etc.

Qualitative Illustration


- Source text from Wikipedia, let GPT-4o rewrite, complete, and judge
- Avg acc on three examples: $48.0\% \rightarrow 25.9\%$, $93.3\% \rightarrow 62.0\%$, $78.3\% \rightarrow 28.5\%$

How much will format influence the language model's memorization of the knowledge?
How to reduce this influence?

Baseline: Dataset Rewriting


• Insert \mathcal{K}_{ts} into \mathcal{D}_{wiki} controlled by ratio r: the number of in-mode occurrence over cross-mode occurrence.

	$f_{\sf ts} \ q_{\sf ts}$	$f_{wiki}\ q_{wiki}$	$f_{\sf ts}\ q_{\sf wiki}$	$f_{wiki}\ q_{ts}$
r = 1.0	-4.87×10^{-6}	-5.94×10^{-6}	-6.75×10^{-5}	-2.98×10^{-4}

CASCADE

- Capture knowledge with doubling context lengths
- Compute loss only on second half of the context + overlap contexts
- Ensemble different contexts proportional to inverse negative log prob

Methods		$f_{\sf ts} \ q_{\sf ts}$	$f_{wiki}\ q_{wiki}$	$f_{\sf ts} \ q_{\sf wiki}$	$f_{wiki}\ q_{ts}$
Direct Training (Ablation)	Non-overlap	-1.93×10^{-8}	-1.43×10^{-8}	-4.77×10^{-3}	-1.53×10^{-2}
	Overlap	-2.29×10^{-8}	-2.16×10^{-7}	-2.66×10^{-1}	-4.31×10^{-1}
Original	Non-overlap	-5.91×10^{-6}	-6.21×10^{-6}	-2.45×10^{-5}	-1.36×10^{-4}
CASCADE	Overlap	-9.65×10^{-9}	-8.51×10^{-9}	-2.59×10^{-8}	-9.22×10^{-7}
CASCADE	Non-overlap	-3.87×10^{-5}	-3.95×10^{-5}		-1.54×10^{-4}
	Overlap	-3.26×10^{-7}	-3.44×10^{-7}	-3.71×10^{-6}	-5.06×10^{-6}

COLM 2025, Montréal vectorzh@cs.washington.edu